资源描述:
《2019-2020年高考数学一轮复习第七章不等式推理与证明考点规范练35直接证明与间接证明文新人教B版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高考数学一轮复习第七章不等式推理与证明考点规范练35直接证明与间接证明文新人教B版1.要证:a2+b2-1-a2b2≤0,只需证明( ) A.2ab-1-a2b2≤0B.a2+b2-1-≤0C.-1-a2b2≤0D.(a2-1)(b2-1)≥02.分析法又称执果索因法,若用分析法证明“设a>b>c,且a+b+c=0,求证:a”索的因应是( )A.a-b>0B.a-c>0C.(a-b)(a-c)>0D.(a-b)(a-c)<03.(xx河南郑州模拟)设x>0,P=2x+2-x,Q=
2、(sinx+cosx)2,则( )A.P>QB.P0,则f(x1)+f(x2
3、)的值( )A.恒为负值B.恒等于零C.恒为正值D.无法确定正负7.(xx山东烟台模拟)设a>b>0,m=,n=,则m,n的大小关系是 . 8.与2的大小关系为 . 9.(xx河北唐山模拟)已知a>0,>1,求证:.10.在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q(q≠1),且b2+S2=12,q=.(1)求an与bn;(2)证明:+…+.能力提升11.若△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则( )A.△A1B1C1和△A2B
4、2C2都是锐角三角形B.△A1B1C1和△A2B2C2都是钝角三角形C.△A1B1C1是钝角三角形,△A2B2C2是锐角三角形D.△A1B1C1是锐角三角形,△A2B2C2是钝角三角形12.已知a,b,μ∈(0,+∞),且=1,要使得a+b≥μ恒成立,则μ的取值范围是 . 13.在Rt△ABF中,AB=2BF=4,C,E分别是AB,AF的中点(如图1).将此三角形沿CE对折,使平面AEC⊥平面BCEF(如图2),已知D是AB的中点.求证:(1)CD∥平面AEF;(2)平面AEF⊥平面ABF.图1图2高考预测14.(xx贵州安
5、顺调研)已知函数f(x)=3x-2x,求证:对于任意的x1,x2∈R,均有≥f.15.已知数列{an}的前n项和为Sn,且Sn=an+1+n-2,n∈N+,a1=2.(1)证明:数列{an-1}是等比数列,并求数列{an}的通项公式;(2)设bn=(n∈N+)的前n项和为Tn,证明:Tn<6.参考答案考点规范练35 直接证明与间接证明1.D 解析在各选项中,只有(a2-1)(b2-1)≥0⇒a2+b2-1-a2b2≤0,故选D.2.C 解析a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔a2+2ac+c2-ac-3a2<0⇔-2
6、a2+ac+c2<0⇔2a2-ac-c2>0⇔(a-c)(2a+c)>0⇔(a-c)(a-b)>0.故选C.3.A 解析因为2x+2-x≥2=2(当且仅当x=0时等号成立),而x>0,所以P>2;又(sinx+cosx)2=1+sin2x,而sin2x≤1,所以Q≤2.于是P>Q.故选A.4.B 解析由已知条件,可得由②③得代入①,得=2b,即x2+y2=2b2.故x2,b2,y2成等差数列.5.D 解析∵a>0,b>0,c>0,∴=≥6,当且仅当a=b=c=1时等号成立,故三者不能都小于2,即至少有一个不小于2.6.A 解析由f(
7、x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,可知f(x)是R上的减函数.由x1+x2>0,可知x1>-x2,即f(x1)0,显然成立.8.>2 解析要比较与2的大小,只需比较()2与(2)2的大小,只需比较6+7+2与8+5+4的大小,只需比较与2的大小,只需比较42与40的大小.∵42>40,∴>2.9.证明由已知>1及a>0可知08、要证,只需证>1,只需证1+a-b-ab>1,只需证a-b-ab>0,即>1,即>1,这是已知条件,所以原不等式得证.10.(1)解设等差数列{an}的公差为d.因为所以解得(q=-4舍去)故an=3+3(n-1)=3n,bn=3n-