天津市部分区2018-2019学年高二数学上学期期末考试试题

天津市部分区2018-2019学年高二数学上学期期末考试试题

ID:45622392

大小:78.50 KB

页数:7页

时间:2019-11-15

天津市部分区2018-2019学年高二数学上学期期末考试试题_第1页
天津市部分区2018-2019学年高二数学上学期期末考试试题_第2页
天津市部分区2018-2019学年高二数学上学期期末考试试题_第3页
天津市部分区2018-2019学年高二数学上学期期末考试试题_第4页
天津市部分区2018-2019学年高二数学上学期期末考试试题_第5页
资源描述:

《天津市部分区2018-2019学年高二数学上学期期末考试试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、天津市部分区2018-2019学年高二上学期期末考试数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线﹣y2=1的焦点坐标为(  )A.(﹣3,0),(3,0)B.(0,﹣3),(0,3)C.(﹣,0),(,0)D.(0,﹣),(0,)2.命题“∃x0∈(0,+∞),使得e<x0”的否定是(  )A.∃x0∈(0,+∞),使得e>x0B.∃x0∈(0,+∞),使得e≥x0C.∀x∈(0,+∞),均有ex>xD.∀x∈(0,+∞),均有ex≥x3.若复数(

2、i为虚数单位),则z的共轭复数=(  )A.1+iB.﹣1+iC.l﹣iD.﹣1一i4.已知x∈R,则“x>1”是“x2>x”的(  )A.充分不必要条件   B.必要不充分条件C.充要条件D.既不充分也不必要条件5.设公比为﹣2的等比数列{an}的前n项和为Sn,若S5=,则a4等于(  )A.8B.4C.﹣4D.﹣86.已知函数f(x)=lnx﹣,则f(x)(  )A.有极小值,无极大值B.无极小值有极大值C.既有极小值,又有极大值D.既无极小值,又无极大值7.在数列{an}中,a1=3,an+1=2an﹣1(n∈N*)

3、,则数列{an}的通项公式为(  )A.an=2n+1B.an=4n﹣1C.an=2n+1D.an=2n﹣1+28.在空间四边形ABCD中,向量=(0,2,﹣1),=(﹣1,2,0),=(0﹣2,0),则直线AD与平面ABC所成角的正弦值为(  )A.B.C.-D.-9.已知双曲线=1(a>0,b>0)的两条渐近线与抛物线y2=8x的准线分别交于M,N两点,A为双曲线的右顶点,若双曲线的离心率为2,且△AMN为正三角形,则双曲线的方程为(  )A.B.C.=1D.=110.已知f(x)是定义在R上的函数,f′(x)是f(x)

4、的导函数,且满足f′(x)+f(x)<0,设g(x)=ex•f(x),若不等式g(1+t2)<g(mt)对于任意的实数t恒成立,则实数m的取值范围是(  )A.(﹣∞,0)∪(4,+∞)B.(0,1)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣2,2)二、填空题:本大题共5小题,每小题4分,共20分.11.曲线f(x)=2x+在点(1,3)处的切线方程为  .12.已知向量=(2,﹣1,3)与=(3,λ,)平行,则实数λ的值为  .13.已知a,b均为正数,4是2a和b的等比中项,则a+b的最小值为  .14.设Sn是等差数列{

5、an}的前n项和,已知a1=2,S9=6a8,则数列{}的前10项的和为  .15.已知离心率为的椭圆=1(a>b>0)的两个焦点分别为F1,F2,点P在椭圆上,若=0,且△PF1F2的面积为4,则椭圆的方程为  .三、解答题:本大题共5小题,共60分.解答应写出文宇说明、证明过程成演算步骤.16.(12分)已知复数z=(m2+2m)+(m2﹣2m﹣3)i,m∈R(i为虚数单位).(Ⅰ)当m=1时,求复数的值;(Ⅱ)若复数z在复平面内对应的点位于第二象限,求m的取值范围.17.(12分)已知数列{an}的前n项和为Sn,且S

6、n=(n∈N*),正项等比数列{bn}满足b1=a1,b5=a6.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)设∁n=an•bn,求数列{∁n}的前n项和Tn.18.(12分)如图,已知多面体ABC﹣A1B1C1中,AA1,BB1,CC1均垂直于平面ABC,AB⊥AC,AA1=4,CC1=1,AB=AC=BB1=2.(Ⅰ)求证:A1C⊥平面ABC1;(Ⅱ)求二面角B﹣A1B1﹣C1的余弦值.19.(12分)已知椭圆C:+y2=1.(Ⅰ)求C的离心率;(Ⅱ)若直线l:y=x+m(m为常数)与C交于不同的两点A和B,且=,其

7、中O为坐标原点,求线段AB的长.20.(12分)已知函数f(x)=x3﹣x2+x,a∈R.(Ⅰ)当a=1时,求f(x)在[﹣1,1]上的最大值和最小值;(Ⅱ)若f(x)在区间[,2]上单调递增,求a的取值范围;(Ⅲ)当m<0时,试判断函数g(x)=其中f′(x)是f(x)的导函数)是否存在零点,并说明理由.高二数学参考答案一、选择题:本大题共10小题,每小题4分,共40分.题号12345678910答案CDBACBCABD二、填空题:本大题共5小题,每小题4分,共20分.11. 12. 13. 14.15.三、解答题:本大题

8、共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.(12分)解:(Ⅰ)当时,,∴.           ………….……………6分(Ⅱ)∵复数在复平面内对应的点位于第二象限,∴…………………………………………9分解得,所以的取值范围是.…………………………………12分17.(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。