资源描述:
《2019-2020年高中数学第二讲参数方程四渐开线与摆线成长训练新人教A版选修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高中数学第二讲参数方程四渐开线与摆线成长训练新人教A版选修夯基达标1.关于渐开线和摆线的叙述,正确的是( )A.只有圆才有渐开线B.渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形C.正方形也可以有渐开线D.对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同解析:本题主要考查渐开线和摆线的基本概念.首先要明确不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的定义虽然从字面上有相似之处,但是它们的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什
2、么地方建立直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同.答案:C2.给出下列说法:①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线也可以转化为普通方程,但是转化后的普通方程比较麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题;③在求圆的摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,可能会得到不同的参数方程;④圆的渐开线和x轴一定有交点而且是唯一的交点.其中正确的说法有( )A.①③B.②④C.②③D.①③④解析:本题主要考查渐开线和摆线的有关
3、概念和参数方程的问题.对于一个圆,只要半径确定,渐开线和摆线的形状就是确定的,但是随着选择坐标系的不同,其在坐标系中的位置也会不同,相应的参数方程也会有所区别,至于渐开线和坐标轴的交点要看选取的坐标系的位置.答案:C3.已知圆的渐开线的参数方程是(φ为参数),则此渐开线对应的基圆的直径是___________,当参数φ=时对应的曲线上的点的坐标为___________.解析:圆的渐开线的参数方程由圆的半径唯一确定,从方程不难看出基圆的半径为1,故直径为2.求当φ=π4时对应的坐标只需把φ=代入曲线的参数方程,x=,由此可得对应的坐标为().
4、答案:2 ()4.我们知道关于直线y=x对称的两个函数互为反函数,则圆的摆线(φ为参数)关于直线y=x对称的曲线的参数方程为___________.解析:关于直线y=x对称的函数互为反函数,而求反函数的过程主要体现了x与y的互换.所以要写出摆线方程关于直线y=x的对称曲线方程,把其中的x与y互换,即是交换x与y对应的参数表达式.答案:(φ为参数)5.已知一个圆的摆线方程是(φ为参数),求该圆的面积和对应的圆的摆线的参数方程.解析:首先根据所给出的摆线方程判断出圆的半径为4,易得圆的面积为16π,再代入渐开线的参数方程的标准形式即可得圆的渐
5、开线的参数方程.解:首先根据渐开线的参数方程可知圆的半径为4,所以面积是16π.该圆对应的渐开线的参数方程是(φ为参数).6.已知一个圆的摆线过一定点(2,0),请写出当圆的半径最大时该摆线的参数方程和对应的圆的渐开线的标准方程.解析:根据圆的摆线的参数方程的表达式(φ为参数),只需把点(2,0)代入参数方程求出r的表达式,根据表达式求出r的最大值,再确定对应的摆线和渐开线的方程.解:令y=0,得r(1-cosφ)=0,即得cosφ=1.所以φ=2kπ(k∈Z).代入x=r(2kπ-sin2kπ)=2,即得r=(k∈Z).又由实
6、际可知r>0,所以r=1kπ(k∈N*).易知,当k=1时,r最大,最大值为1π.代入即可得圆的摆线的参数方程是(φ为参数),圆的渐开线的参数方程是(φ为参数).走近高考1.(高考预测题)如图,ABCD是边长为1的正方形,曲线AEFGH…叫做“正方形的渐开线”,其中AE、EF、FG、GH、…的圆心依次按B、C、D、A循环,它们依次相连接,则曲线AEFGH的长是( )A.3πB.4πC.5πD.6π解析:如题图,根据渐开线的定义可知,是半径为1的圆周长,长度为,继续旋转可得是半径为2的圆周长,长度为π;是半径为3的圆周长,
7、长度为;是半径为4的圆周长,长度为2π.所以,曲线AEFGH的长是5π.答案:C