欢迎来到天天文库
浏览记录
ID:45504837
大小:64.50 KB
页数:6页
时间:2019-11-14
《2019届高三数学上学期第二次月考试题文 (IV)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019届高三数学上学期第二次月考试题文(IV)题号一二三总分得分评卷人得分一、单项选择(每小题5分,共计60分)10.设,满足约束条件,则目标函数的最小值为()A.B.C.D.11.已知直线:与曲线有两个公共点,则实数的取值范围是()A.B.C.D.12.函数,,对,,使,则的取值范围是()A.B.C.D.评卷人得分二、填空题(每小题5分,共计20分)13.设,,.若,则实数的值等于.14.已知为等比数列,,,则_______15.设函数,先将纵坐标不变,横坐标变为原来的2倍,再将图象向右平移个单位长度后得,则的对称中心为________16.已知函数的图像恒过定点A,若点A在直线
2、上,其中,则的最小值为.评卷人得分三、解答题(共计70分)17.(10分)在中,角的对边分别为,已知,,.(1)求的值;(2)求的面积.18.(本小题12分)已知圆经过点和直线相切,且圆心在直线上.(1)求圆的方程;(2)若直线与圆交于,两点,求弦的长19.(本小题12分)已知数列的前项和为,且满足,(1)求的通项公式;(2)求数列的前项和.20.(12分)在中,内角所对的边分别是,已知.(1)若,求角的大小;(2)若,且的面积为,求的周长.21.(本小题满分12分)已知数列的首项,前项和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.22.(本小题满分12分)已知函数,函
3、数.(1)求函数的单调区间;(2)若不等式在上恒成立,求实数的取值范围;文科数学答案第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分,只有一个选项正确,请把答案写在答题卷上)1-6:ACBBAD7-12:AACDCB第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分,请把答案写在答题卷上)13.14.15.16.三、解答题(本题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤,请把答案写在答题卷上)17.解:(1)由得函数的单调递减区间为:(2)由则:18.解:(1)根据题意可得:(2)设的前项和为由(1)得:则19.解:(1)解法一:∵P是等腰直角三角形P
4、BC的直角顶点,且BC=2,∴∠PCB=,PC=,又∵∠ACB=,∴∠ACP=,在△PAC中,由余弦定理得PA2=AC2+PC2-2AC·PCcos=5,∴PA=.解法二:依题意建立如图直角坐标系,则有C(0,0),B(2,0),A(0,3),∵△PBC是等腰直角三角形,∠ACB=,∴∠ACP=,∠PBC=,∴直线PC的方程为y=x,直线PB的方程为y=-x+2,由得P(1,1),∴PA==,(2)在△PBC中,∠BPC=,∠PCB=θ,∴∠PBC=-θ,由正弦定理得==,∴PB=sinθ,PC=sin,∴△PBC的面积S(θ)=PB·PCsin=sinsinθ=2sinθcosθ-
5、sin2θ=sin2θ+cos2θ-=sin-,θ∈,∴当θ=时,△PBC面积的最大值为.20.解:()由方程有两个相等的实数根得(b-2)2=0,则b=2,.由知对称轴方程为,则(2)存在.由即,而抛物线的对称轴为x=1,则时,在[m,n]上为增函数.假设满足题设条件的m,n存在,则即解得又m<n,所以存在21.解:21.解析:(1)的定义域为∵,,当时,在上恒成立∴g(x)的增区间,无减区间,当时,令得,令得,∴的增区间,减区间;(2),即在上恒成立,设,考虑到,,在上为增函数,∵,,∴当时,,在上为增函数,恒成立当时,,在上为增函数,,在上,,递减,,这时不合题意,综上所述,;
6、22.解:(1)由x=cosα+sinα得,所以曲线M可化为y=x2-1,x∈[,],由ρsin=t得ρsinθ+ρcosθ=t,所以ρsinθ+ρcosθ=t,所以曲线N可化为x+y=t.(2)若曲线M,N有公共点,则当直线N过点,时满足要求,此时t=,并且向左下方平行移动直到相切之前总有公共点,相切时仍然只有一个公共点,联立,得x2+x-1-t=0,由Δ=1+4(1+t)=0,解得t=-.综上可求得t的取值范围是-≤t≤.
此文档下载收益归作者所有