欢迎来到天天文库
浏览记录
ID:45500452
大小:2.11 MB
页数:56页
时间:2019-11-14
《人教出版高级中学数学必修一教案课程》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、*.课题:§1.1集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础。许多重要的数学分支,都是建立在集合理论的基础上。此外,集合理论的应用也变得更加广泛。课型:新授课课时:1课时教学目标:1.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)牢记常用的数集及其专用的记号。(3)理解集合中的元素具有确定性、互异性、无序性。(4)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的问题。2.过程与方法(1)学生经历从集合实例中抽象概括出集合共同特征的过程,深入理解集合的含义。(2)学生自己归纳本节所学
2、的知识点。3.情感态度价值观使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣。教学重点:集合的概念与表示方法。教学难点:对待不同问题,表示法的恰当选择。教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合
3、为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。2.一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。3.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例:(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。例:(3)无序性:只要构成两个集合的元素一样,我们称这两个集合是相等的。例:*.1.思考1:课本P3的思考
4、题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。答案:(1)把3-11内的每一个偶数作为元数,这些偶数全体就构成一个集合。(2)不能组成集合,因为组成它的元素是不确定的。2.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belongto)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作aA例:我们用A表示“1~20以内所有的素数”组成的集合,则6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集
5、合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。(1)列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列表法。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;例1.(课本例1)思考2,引入描述法答案:(1)1~9内所有偶数组成的集合(2)不能,因为集合中元素的个数是无穷多个。说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。(2)描述法:用集合所含元素的共同特征表示集合的方法称为描述法。具体方法:在大括号内先写上表示这个集合元素
6、的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。如:{x
7、x-3>2},{(x,y)
8、y=x2+1},{直角三角形},…;例2.(课本例2)说明:(课本P5最后一段)思考3:(课本P6思考)强调:描述法表示集合应注意集合的代表元素{(x,y)
9、y=x2+3x+2}与{y
10、y=x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。辨析:这里的{}已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。如果写{实数}是正确的。说明:列举法与描述法各有优点,应该根据具
11、体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。(三)课堂练习(课本P6练习)一、归纳小结本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。*.四、作业布置(书面作业:习题1.1,第1-4题)课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课型:新授课课时:1课时教学目标:1.知识与技能(1)了解集合之间的包含与相等的含义;(2)能用venn图表达集合之间的关系;(3
此文档下载收益归作者所有