欢迎来到天天文库
浏览记录
ID:45478908
大小:6.17 MB
页数:6页
时间:2019-11-13
《2019-2020年高中数学 1.1 空间几何体 1.1.1 构成空间几何体的基本元素教案 新人教B版必修2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高中数学1.1空间几何体1.1.1构成空间几何体的基本元素教案新人教B版必修2教学分析 本节教材通过长方体体会空间中的点、线、面、体之间的关系,体会它们如何构成了空间图形.对空间中线、面平行及垂直的了解,是认识几何体结构特征所必需的,因此有必要在此进行讨论和研究.在教学中要引导学生在直观感知的基础上展开讨论和交流,对正确观点要及时肯定,并说明在后面的学习中深入研究;对不正确的观点也要肯定学生探索的积极性,并指导他们通过实例举出反例.三维目标 1.了解空间中的点、线、面、体之间的关系,体会它们是怎样构成的空间图形,培养学生的空间想象能力.2.认识空间点
2、、线、面之间的位置关系,培养学生的探索能力和抽象思维能力.重点难点 教学重点:从运动的观点初步认识点、线、面、体之间的生成关系和位置关系.教学难点:通过几何体的直观图观察其基本元素间的关系以及异面直线的概念.课时安排 1课时导入新课 设计1.在小学和初中,我们已经学习了长方体、球、圆柱等一些简单的几何体,在日常生活中,我们看到的很多建筑物大都是这些几何体组成的,从本节开始,我们学习常见几何体的结构特征,教师点出课题.设计2.我们知道点是构成线的基本元素,那么构成几何体的元素是什么呢?教师点出课题.推进新课 (1)什么样的物体叫几何体?(2)粉笔盒是什么几
3、何体?(3)如下图所示的长方体,有几个面?几条棱?几个顶点?(4)想一想几何体是由什么构成的?(5)你知道工程人员怎样检验一个物体的表面是不是平的?(6)我们每个人都有个名字,那么如何表示平面呢?(7)流星划过夜空,给我们一种“点动成线”的视觉感受.你能用运动的观点来说明点、线、面、体之间的关系吗?讨论结果:(1)只考虑一个物体占有空间部分的形状和大小,而不考虑其他因素,则这个空间部分叫做一个几何体.(2)长方体.(3)长方体有6个面,12条棱,8个顶点.(4)几何体是由点、线、面构成的.点、线、面是构成几何体的基本元素.(5)通常把直尺放在物体表面的各个方向上,看看直尺的边缘与物体表
4、面是否有缝隙,如果都不出现缝隙,说明这个物体表面是平的.线有直线(段)和曲线(段)之分,面有平面(部分)和曲面(部分)之分.由此可见,平面是处处平直的面,而曲面就不是处处是平的.(6)表示法一:用一个希腊字母α,β,γ,……来命名;表示法二:用四边形的对角顶点的字母表示;表示法三:用四边形的四个顶点的字母表示.如下图所示,平面α,平面β,平面AC,平面ABCD.(7)如果点运动的方向始终不变,那么它的轨迹是一条直线或线段,如果点运动的方向时刻在变化,则运动的轨迹是一条曲线或曲线的一段.同样,一条线段运动的轨迹可以是一个面,面运动的轨迹(经过的空间部分)可以形成一个几何体,如下图所示.直
5、线平行运动,可以形成平面或曲面.固定射线的端点,让其绕着一个圆弧转动,可以形成锥面,如下图所示.观察如下图所示的长方体,设想长方体的棱可以延伸为直线,面可延伸为平面,回答下列问题.(1)根据长方体的棱所在直线的位置关系,猜想空间两条直线的位置关系?(2)根据长方体的棱所在直线与各面所在平面的位置关系,猜想空间直线与平面的位置关系?(3)直线AA′与平面AC相交,还有什么特点吗?(4)平面AC与平面A′C′有公共点吗?(5)平面AC与平面AB′有公共点吗?(6)根据长方体的面所在平面的位置关系,猜想空间两平面的位置关系?(7)我们知道直线AA′⊥平面AC,直线AA′在平面AB′内,平面A
6、C与平面AB′相交,这两个平面还有其他特点吗?讨论结果:(1)与直线AA′平行的直线有BB′,CC′,DD′;与直线AA′相交的直线有AB,AD,A′B′,A′D′;与直线AA′既不平行又不相交的直线有CB,CD,C′B′,C′D′.由此可见,空间中的两条直线的位置关系有三种:平行、相交、既不平行又不相交.(2)直线AA′与平面BC′平行,记作AA′∥平面BC′;直线AA′在平面AB′内;直线AA′与平面AC相交.由此可见,空间直线与平面的位置关系有:平行、相交、在平面内.(3)直线AA′与平面AC不仅相交,而且垂直,记作AA′⊥平面AC,即直线与平面垂直是直线与平面相交的特殊情况.此
7、时直线AA′称为平面AC的垂线,平面AC称为直线AA′的垂面.线段AA′为点A′到平面AC内的所有连线段中最短的一条.线段AA′的长称为点A′到平面AC的距离.(4)平面AC与平面A′C′没有公共点,则说平面AC与平面A′C′平行.如果两个平面没有公共点,那么就说这两个面平行.(5)平面AC与平面AB′有公共点,并且它们相交于直线AB,则说平面AC与平面AB′相交.(6)空间两个平面的位置关系有:平行、相交.(7)由于平面AB′经过平面AC的垂
此文档下载收益归作者所有