2019春九年级数学下册 第三章 圆 3.7 切线长定理教案 (新版)北师大版

2019春九年级数学下册 第三章 圆 3.7 切线长定理教案 (新版)北师大版

ID:45287443

大小:95.50 KB

页数:4页

时间:2019-11-11

2019春九年级数学下册 第三章 圆 3.7 切线长定理教案 (新版)北师大版_第1页
2019春九年级数学下册 第三章 圆 3.7 切线长定理教案 (新版)北师大版_第2页
2019春九年级数学下册 第三章 圆 3.7 切线长定理教案 (新版)北师大版_第3页
2019春九年级数学下册 第三章 圆 3.7 切线长定理教案 (新版)北师大版_第4页
资源描述:

《2019春九年级数学下册 第三章 圆 3.7 切线长定理教案 (新版)北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、*3.7切线长定理1.理解切线长的定义;(重点)2.掌握切线长定理并能运用切线长定理解决问题.(难点)一、情境导入如图①,PA为⊙O的一条切线,点A为切点.如图②所示,沿着直线PO将纸对折,由于直线PO经过圆心O,所以PO是圆的一条对称轴,两半圆重合.设与点A重合的点为点B,这里,OB是⊙O的一条半径,PB是⊙O的一条切线.图中PA与PB、∠APO与∠BPO有什么关系?二、合作探究探究点:切线长定理【类型一】利用切线长定理求线段的长如图,从⊙O外一点P引圆的两条切线PA、PB,切点分别是点A和点B,如果∠APB=60°,线段PA=10,那么弦

2、AB的长是(  )A.10B.12C.5D.10解析:∵PA、PB都是⊙O的切线,∴PA=PB.∵∠APB=60°,∴△PAB是等边三角形,∴AB=PA=10.故选A.方法总结:切线长定理是在圆中判断线段相等的主要依据,经常用到.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】利用切线长定理求角的度数如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠ACB=70°,那么∠OPA的度数是________度.解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠

3、OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB=360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.易证△POA≌△POB,∴∠OPA=∠APB=20°.故答案为20.方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型三】利用切线长定理求三角形的周长如图,PA、PB、DE是⊙O的切线,切点分别为A、B、F,已知PO=13cm,⊙O的半径为5cm,求△PDE的周长.解

4、析:连接OA,根据切线的性质定理,得OA⊥PA.根据勾股定理,得PA=12,再根据切线长定理即可求得△PDE的周长.解:连接OA,则OA⊥PA.在Rt△APO中,PO=13cm,OA=5cm,根据勾股定理,得AP=12cm.∵PA、PB、DE是⊙O的切线,∴PA=PB,DA=DF,EF=EB,∴△PDE的周长PD+DE+PE=PD+DF+FE+PE=PD+DA+EB+PE=PA+PB=2PA=24cm.方法总结:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.变式训练:见《学练优》本课时练习“课后巩固提升”

5、第4题【类型四】利用切线长定理解决圆外切四边形的问题如图,四边形ABCD的边与圆O分别相切于点E、F、G、H,判断AB、BC、CD、DA之间有怎样的数量关系,并说明理由.解析:直接利用切线长定理解答即可.解:AD+BC=CD+AB,理由如下:∵四边形ABCD的边与圆O分别相切于点E、F、G、H,∴DH=DG,CG=CF,BE=BF,AE=AH,∴AH+DH+CF+BF=DG+GC+AE+BE,即AD+BC=CD+AB.方法总结:由切线长定理可以得到一些相等的线段,一定要明确这些相等线段.记住“圆外切四边形的对边之和相等”,对我们以后解决问题有

6、很大帮助.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型五】切线长定理与三角形内切圆的综合如图,在△ABC中,AB=AC,⊙O是△ABC的内切圆,它与AB、BC、CA分别相切于点D、E、F.(1)求证:BE=CE;(2)若∠A=90°,AB=AC=2,求⊙O的半径.解析:(1)利用切线长定理得出AD=AF,BD=BE,CE=CF,进而得出BD=CF,即可得出答案;(2)首先连接OD、OE、OF,进而利用切线的性质得出∠ODA=∠OFA=∠A=90°,进而得出四边形ODAF是正方形,再利用勾股定理求出⊙O的半径.(1)证明:∵⊙O

7、是△ABC的内切圆,∴AD=AF,BD=BE,CE=CF.∵AB=AC,∴AB-AD=AC-AF,即BD=CF,∴BE=CE;(2)解:连接OD、OE、OF,∵⊙O是△ABC的内切圆,切点为D、E、F,∴∠ODA=∠OFA=∠A=90°.又∵OD=OF,∴四边形ODAF是正方形.设OD=AD=AF=r,则BE=BD=CF=CE=2-r.在△ABC中,∠A=90°,∴BC==2.又∵BC=BE+CE,∴(2-r)+(2-r)=2,得r=2-,∴⊙O的半径是2-.方法总结:本题综合考查了正方形的判定以及切线长定理和勾股定理等知识,解决问题的关键是

8、得出四边形ODAF是正方形.【类型六】利用切线长定理解决存在性问题如图①,已知正方形ABCD的边长为2,点M是AD的中点,P是线段MD上的一动点(P不与M,D重合)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。