2019-2020年高考数学 数列通项公式求解方法总结

2019-2020年高考数学 数列通项公式求解方法总结

ID:45260265

大小:720.80 KB

页数:19页

时间:2019-11-11

2019-2020年高考数学 数列通项公式求解方法总结_第1页
2019-2020年高考数学 数列通项公式求解方法总结_第2页
2019-2020年高考数学 数列通项公式求解方法总结_第3页
2019-2020年高考数学 数列通项公式求解方法总结_第4页
2019-2020年高考数学 数列通项公式求解方法总结_第5页
资源描述:

《2019-2020年高考数学 数列通项公式求解方法总结》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高考数学数列通项公式求解方法总结一、公式法例1已知数列满足,,求数列的通项公式。解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。二、累加法例2已知数列满足,求数列的通项公式。解:由得则所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。例3已知数列满足,求数列的通项公式。解:由得则所以评注:本题

2、解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。例4已知数列满足,求数列的通项公式。解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。三、累乘法例5已知数列满足,求数列的通项公式。解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。例6(xx年全国I第15题,原题是填空题)已知数列满足,求的通项公式。解:因为①所以②用②式-①式得则故所以③由,,则,又知,则,代入③得。所以,的通项公

3、式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。四、待定系数法例7已知数列满足,求数列的通项公式。解:设④将代入④式,得,等式两边消去,得,两边除以,得代入④式得⑤由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。例8已知数列满足,求数列的通项公式。解:设⑥将代入⑥式,得整理得。令,则,代入⑥式得⑦由及⑦式,得,则,故数列是以为首项,以3为公比的等比数

4、列,因此,则。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。例9已知数列满足,求数列的通项公式。解:设⑧将代入⑧式,得,则等式两边消去,得,解方程组,则,代入⑧式,得⑨由及⑨式,得则,故数列为以为首项,以2为公比的等比数列,因此,则。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。五、对数变换法例10已知数列满足,,求数列的通项公式。解:因为,所以。在式两边取常用对数得⑩设将⑩式代入式,得,两边消去

5、并整理,得,则,故代入式,得由及式,得,则,所以数列是以为首项,以5为公比的等比数列,则,因此则。评注:本题解题的关键是通过对数变换把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。六、迭代法例11已知数列满足,求数列的通项公式。解:因为,所以又,所以数列的通项公式为。评注:本题还可综合利用累乘法和对数变换法求数列的通项公式。即先将等式两边取常用对数得,即,再由累乘法可推知,从而。七、数学归纳法例12已知数列满足,求数列的通项公式。解:由及,得由此可猜测,往下用数学归纳法证明这个结论。(1

6、)当时,,所以等式成立。(2)假设当时等式成立,即,则当时,由此可知,当时等式也成立。根据(1),(2)可知,等式对任何都成立。评注:本题解题的关键是通过首项和递推关系式先求出数列的前n项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。八、换元法例13已知数列满足,求数列的通项公式。解:令,则故,代入得即因为,故则,即,可化为,所以是以为首项,以为公比的等比数列,因此,则,即,得。评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。九、不动

7、点法例14已知数列满足,求数列的通项公式。解:令,得,则是函数的两个不动点。因为。所以数列是以为首项,以为公比的等比数列,故,则。评注:本题解题的关键是先求出函数的不动点,即方程的两个根,进而可推出,从而可知数列为等比数列,再求出数列的通项公式,最后求出数列的通项公式。例15已知数列满足,求数列的通项公式。解:令,得,则是函数的不动点。因为,所以,所以数列是以为首项,以为公差的等差数列,则,故。评注:本题解题的关键是先求出函数的不动点,即方程的根,进而可推出,从而可知数列为等差数列,再求出数列的通项公式,最后求出数列的通项公式。十、

8、特征根法例16已知数列满足,求数列的通项公式。解:的相应特征方程为,解之求特征根是,所以。由初始值,得方程组求得从而。评注:本题解题的关键是先求出特征方程的根。再由初始值确定出,从而可得数列的通项公式。一、公式法例1已知数列满足,,求

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。