资源描述:
《2019-2020年高一数学12月月考试卷(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高一数学12月月考试卷(含解析)一、单选题1.已知集合,集合,则A.B.C.D.【答案】B【解析】本题考查分式不等式和一元一次不等式的解法,考查集合的交、补运算.因为可化为,故选B.2.函数的定义域为A.B.C.D.【答案】B【解析】本题考查函数定义域的求法,对数函数.使函数有意义的条件是,解得.所以函数的定义域为.选B.3.已知函数,其定义域是,则下列说法正确的是A.有最大值,无最小值B.有最大值,最小值C.有最大值,无最小值D.有最大值,最小值【答案】A【解析】本题考查函数的定义域和值域.,在上为减函数,所以在上,时取得最大值
2、,最小值不存在,最大值为.选A.4.设,则二次函数的图象可能是A.B.C.D.【答案】D【解析】本题主要考查二次函数的图象与性质以及分类讨论的思想.由图象可知,均不为0,且对称轴为x=,当a<0时,函数的图象开口向下,观察选项A,对称轴x=,所以b<0,又因,所以c>0,又因为,则A错误;观察选项B,对称轴x=,所以b>0,又因,所以c<0,又因为,所以B错误.当a>0时,函数的开口向上,观察图象C、D,图象与y轴交于负半轴,所以c<0,又因为,所以b<0,因此D正确.5.已知函数为偶函数,那么在上是A.单调递增函数B.单调递减函数C.先减后增函数D
3、.先增后减函数【答案】A【解析】本题主要考查二次函数的奇偶性与单调性的判断.由于函数 为偶函数,则,所以a=0,=,是开口向下、对称轴为y轴的二次函数,所在上是单调递增函数6.偶函数在区间[0,4]上单调递减,则有A.B.C.D.【答案】A【解析】本题主要考查函数的奇偶性与单调性.函数是偶函数,所以.,又因为函数在区间[0,4]上单调递减,且,所以,即7.若,,则A.B.C.D.【答案】D【解析】本题主要考查指数函数与对数函数的性质的应用,考查了分析问题与解决问题的能力.因为,所以,,,则8.已知函数和均为奇函数,在区间上有最大值5,那么在上的最小值
4、为A.-5B.-9C.-7D.-1【答案】B【解析】本题考查函数的奇偶性、函数的最值,意在考查考生的分析理解能力.设,由函数和均为奇函数,则,则为奇函数,由,得即得.故本题正确答案为B.9.下列哪组中的函数与是同一函数A.B.C.D.【答案】C【解析】本题主要考查函数解析式与定义域、值域.A.定义域不同,错;B.定义域不同,错;C.两个函数的定义域、值域与对应法则都相同,正确;D.定义域不同,错.故选C.10.若,则不等式的解集是A.B.C.D.【答案】A【解析】本题主要考查幂函数的性质.显然的定义域是,且是增函数,所以原不等式等价于,解得11.函数
5、的大致图象是【答案】B【解析】本题考查函数的图像与性质.由得或,所以的定义域为.因为是偶函数,所以图像关于轴对称,故只需考虑时的情形.因为在上是递增的,且当时,,,故选B.12.已知函数与函数的图象关于直线对称,函数的图象与的图象关于轴对称,若,则实数的值为A.B.C.D.【答案】C【解析】本题主要考查互为反函数的概念的运用.由题意,函数与函数的图象关于直线对称,则而的图象与的图象关于轴对称,=-,故=-lna,a=. ,选C.二、填空题13.已知定义在R上的奇函数,当时,,那么时, .【答案】【解析】本题考查分段函数解析式
6、的求法和奇函数的性质.设,则,=,又,.14.设为常数且,是定义在上的奇函数,当时,,若对一切都成立,则的取值范围为_____________________.【答案】【解析】本题考查函数的性质与最值.当时,;而是定义在上的奇函数,所以当时,取得最小值;当时,,解得,即;当时,,解得;所以若对一切都成立,则.即的取值范围为.【备注】注意“” 15.已知奇函数在区间上是单调递增函数,且在区间上的最大值为8,最小值为,则 【答案】-15【解析】本题主要考查函数的单调性与奇偶性的应用以及函数的最值的求法.由奇函数在区间上是单调递增函数,所以
7、奇函数在区间上是单调递增函数,由题意可得,,,,则16.设全集集合则___________.【答案】【解析】本题主要考查集合的基本运算以及考查分析问题与解决问题的能力.集合所以,则三、解答题17.计算下列各式的值:(1);(2).【答案】(1)原式(2)原式【解析】本题考查指数和对数的运算性质.18.已知函数.(1)判断的奇偶性,并证明;(2)求使的的取值范围.【答案】(1)由,得.故的定义域为.∵∴是奇函数.(2)当时,由,得,所以,当时,由,得,所以故当时,的取值范围是;当时,的取值范围是.【解析】本题主要考查函数的奇偶性和单调性,以及不等式的求
8、解.解决的关键是对于底数要分类讨论进行求解.19.某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修