欢迎来到天天文库
浏览记录
ID:45210899
大小:240.00 KB
页数:12页
时间:2019-11-10
《2019-2020年高三(上)期中数学试卷(理科)苏教版含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
2019-2020年高三(上)期中数学试卷(理科)苏教版含解析 一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.(5分)已知全集U={1,2,3,4,5,6,7},A={2,4,5},则CUA= {1,3,6,7} .考点:补集及其运算.专题:计算题.分析:直接利用补集的定义,求出A的补集即可.解答:解:因为全集U={1,2,3,4,5,6,7},A={2,4,5},则CUA={1,3,5,7}.故答案为:{1,3,5,7}.点评:本题考查集合的基本运算,补集的定义的应用,考查计算能力. 2.(5分)已知向量,则向量与的夹角为 30° .考点:数量积表示两个向量的夹角.专题:计算题;平面向量及应用.分析:由平面向量模的公式和数量积计算公式,算出||=||=1且•=,再用向量的夹角公式即可算出向量与的夹角.解答:解:∵,∴||=||=1,且•=cos35°cos65°+sin35°sin65°=cos(﹣30°)=cos30°=设与的夹角为θ,可得cosθ==∵0°≤θ≤180°,∴θ=30°故答案为:30°点评:本题给出向量含有三角函数的坐标形式,求它们的夹角大小,着重考查了数量积表示两个向量的夹角的知识,属于基础题. 3.(5分)公比为2的等比数列{an}的各项都是正数,且a4a10=16,则a10= 32 .考点:等比数列的通项公式.专题:等差数列与等比数列.分析:设出等比数列{an}的首项,结合等比数列的通项公式和a4a10=16列式求出首项,然后代回等比数列的通项公式可求a10.解答:解:设等比数列{an}的首项为a1(a1≠0),又公比为2,由a4a10=16,得:,所以,,解得:.所以,. 故答案为32.点评:本题考查了等比数列的通项公式,考查了学生的运算能力,注意的是等比数列中所有项不会为0,此题是基础题. 4.(5分)不等式的解集是 {x|x≥3或x=﹣1} .考点:一元二次不等式的解法.专题:计算题.分析:先要看根号有意义的条件,求得x的范围,同时看x﹣2≥0求得x的范围或x﹣2<0且=0,最后分别取交集.解答:解:不等式等价于或解得x≥3或x=﹣1故答案为:{x|x≥3或x=﹣1}点评:本题主要考查了一元二次不等式的解法.解题的时候要特别留意如根号,对数,分母等隐含的不等式关系. 5.(5分)函数y=xcosx﹣sinx,x∈(0,2π)单调增区间是 (π,2π) .考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:先求导,进而利用导数与函数的单调性的关系即可得出.解答:解:∵函数y=xcosx﹣sinx,x∈(0,2π),∴y′=﹣xsinx,由﹣xsinx>0,x∈(0,2π),化为sinx>0,x∈(0,2π),解得π<x<2π.故函数y=xcosx﹣sinx,x∈(0,2π)单调增区间是(π,2π).故答案为(π,2π).点评:熟练掌握利用导数研究函数的单调性的方法是解题的关键. 6.(5分)若实数x满足log2x+cosθ=2,则|x﹣8|+|x+2|= 10 .考点:对数的运算性质;函数的值域.专题:计算题;函数的性质及应用.分析:根据给出的等式,求出x的值,由余弦函数的值域得到x的范围,取绝对值后可得结果.解答:解:由log2x+cosθ=2,得:log2x=2﹣cosθ,所以,x=22﹣cosθ,因为﹣1≤cosθ≤1,所以1≤2﹣cosθ≤3,则2≤22﹣cosθ≤8,所以2≤x≤8.则|x﹣8|+|x+2|=﹣(x﹣8)+(x+2)=8﹣x+x+2=10.故答案为10.点评:本题考查了对数的运算性质,考查了余弦函数的值域,训练了取绝对值的方法,是基础题. 7.(5分)已知向量满足,.若与垂直,则k= 19 .考点:数量积判断两个平面向量的垂直关系.专题:平面向量及应用.分析:由垂直可得向量的数量积为0,代入已知数值可得关于k的方程,解之即可.解答:解:∵与垂直,∴=0化简可得,代入可得5k+(1﹣3k)••﹣3×13=0化简可得解得k=19故答案为:19点评:本题考查向量的垂直,转化为数量积为0是解决问题的关键,属基础题. 8.(5分)已知函数的图象与函数y=kx+2的图象没有交点,则实数k的取值范围是 [﹣,0] .考点:函数的零点;函数的图象与图象变化.专题:函数的性质及应用.分析:利用零点分段法化简函数的解析式,并画出函数的图象,根据直线y=kx+2过定点A(0,2),数形结合可得满足条件的实数k的取值范围解答:解:函数==,直线y=kx+2过定点A(0,2),取B(1,2),kAB=0,取C(1,﹣2),kAB=﹣,根据图象可知要使函数的图象与函数y=kx+2的图象没有交点,则直线斜率满足:[﹣,0].故答案为:[﹣,0].点评:本题考查的知识点是函数的零点与方程根的关系,其中画出函数的图象,并利用图象分析出满足条件时参数的范围是解答的关键. 9.(5分)等差数列{an}中,已知a2≤7,a6≥9,则a10的取值范围是 [11,+∞) .考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:由等差数列的通项公式an=am+(n﹣m)d,结合题意可求得其公差d≥,从而可求得a10的取值范围.解答:解:∵等差数列{an}中,a2≤7,a6≥9,∴﹣a2≥﹣7,设该等差数列的公差为d,则a6=a2+4d≥9,∴4d≥9﹣a2≥2,∴d≥,∴4d≥2,又a6≥9,∴a10=a6+4d≥11.故a10的取值范围是[11,+∞).故答案为:[11,+∞).点评:本题考查等差数列的性质,求得其公差d≥是关键,着重考查等差数列的通项公式与不等式的性质,属于中档题. 10.(5分)已知A、B、C是直线l上的三点,向量,,满足,则函数y=f(x)的表达式为 .考点:函数解析式的求解及常用方法;向量的加法及其几何意义.专题:计算题.分析:由三点共线可得f(x)+2f′(1)x﹣lnx=1,求导数并把x=1代入可得f′(1)的值,进而可得解析式.解答:解:∵A、B、C三点共线,且,∴f(x)+2f′(1)x﹣lnx=1,两边求导数可得:f′(x)+2f′(1)﹣=0,把x=1代入可得f′(1)+2f′(1)﹣1=0,解得f′(1)=,故f(x)+x﹣lnx=1,即故答案为:点评:本题考查函数解析式的求解,涉及向量的知识和导数内容,属基础题. 11.(5分)已知f(x)=log3(x﹣3),若实数m,n满足f(m)+f(3n)=2,则m+n的最小值为 .考点:基本不等式;对数的运算性质.专题:不等式的解法及应用.分析:由已知得出m、n关系式和取值范围,再利用基本不等式的性质即可求出.解答:解:∵f(x)=log3(x﹣3),f(m)+f(3n)=2,∴,解得.∴m+n==4++4=,当且仅当,m>3,n>1,,解得,,即当,时,取等号.∴m+n的最小值为. 故答案为.点评:正确已知得出m、n关系式和取值范围和熟练掌握利用基本不等式的性质是解题的关键. 12.(5分)已知函数若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是 (﹣∞,1)∪(2,+∞) .考点:特称命题;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由题意可得,若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则说明f(x)在R上不单调,分a=0及a≠0两种情况分布求解即可求得结论.解答:解:若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则说明f(x)在R上不单调.①当a=0时,f(x)=满足题意其其图象如图所示,满足题意②当a<0时,函数y=﹣x2+2ax的对称轴x=a<0,其图象如图所示,满足题意③当a>0时,函数y=﹣x2 +ax的对称轴x=a>0,其图象如图所示,要使得f(x)在R上不单调则只要二次函数的对称轴x=a<1,或∴0<a<1或a>2,综合得:a的取值范围是(﹣∞,1)∪(2,+∞).故答案为:(﹣∞,1)∪(2,+∞).点评:本题考查函数的单调性,考查学生分析解决问题的能力,属于中档题. 13.(5分)给出以下命题:(1)在△ABC中,sinA>sinB是A>B的必要不充分条件;(2)在△ABC中,若tanA+tanB+tanC>0,则△ABC一定为锐角三角形;(3)函数与函数y=sinπx,x∈{1}是同一个函数;(4)函数y=f(2x﹣1)的图象可以由函数y=f(2x)的图象按向量平移得到.则其中正确命题的序号是 (2)(3) (把所有正确的命题序号都填上).考点:命题的真假判断与应用.分析:从条件A,结论B,看A能否得到B,再看B能否得到A,来判断充要条件;从否定结论入手能否得出与条件矛盾来判断命题的真假;看两个函数是否为同一函数,要先看定义域是否相同,再看对应法则是否相同;函数图象变化,y=f(x)→y=f(x+φ)平移的向量=(﹣φ,0).解答:解:①在△ABC中,A>B,若A≤,∵y═sinx是增函数,∴sinA>sinB;若A≥,>π﹣A>B>0,∴sinA>sinB.反过来若sinA>sinB,在△ABC中,得A>B,∴sinA>sinB是A>B的充要条件,∴①×.对②可用反证法证明:假设△ABC为钝角△,不妨设A>,tanA<0,∵A+B+C=π,∴tanA+tanB+tanC=tanA+tan(B+C)(1﹣tanBtanC)=tanA+(﹣tanA)(1﹣tanBtanC)=tanAtanBtanC<0与题设tanAtanBtanC>0矛盾.△ABC不是直角△,∴△ABC为锐角△,∴②√.③中y=+定义域是x∈{1},两函数定义域、对应法则、值域相同.∴为同一函数,③√.对④中函数y=f(2x﹣1)的图象可由y=f(2x)的图象向左平移个单位得到,∴④×.故答案是②③ 点评:要正确理解充要条件的含义,掌握判断方法.判断命题的真假可用反证法, 14.(5分)数列{an}满足,则{an}的前40项和为 420 .考点:数列的求和.专题:计算题;等差数列与等比数列.分析:利用数列递推式,可得数列{an}是从第一项开始,依次取2个相邻奇数项的和都等于1,从第二项开始,依次取2个相邻偶数项的和构成以5为首项,以8为公差的等差数列,由此可得结论.解答:解:∵,∴a2﹣a1=1,a3+a2=2,a4﹣a3=3,a5+a4=4,…,a50﹣a49=49.∴a3+a1=1,a4+a2=5,a7+a5=1,a8+a6=13,a9+a11=1,a12+a10=21,…从第一项开始,依次取2个相邻奇数项的和都等于1,从第二项开始,依次取2个相邻偶数项的和构成以5为首项,以8为公差的等差数列.所以{an}的前40项和为10×1+10×5+=420故答案为:420.点评:本题考查数列递推式,考查数列求和,属于中档题. 二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(14分)设函数f(x)=sin(2x+φ)(﹣π<φ<0).y=f(x)图象的一条对称轴是直线.(1)求函数f(x)的解析式;(2)若,试求的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;函数解析式的求解及常用方法;函数的值.专题:三角函数的图像与性质.分析:(1)根据是函数y=f(x)的图象的对称轴,求得,再根据ϕ的范围求出ϕ的值,即可求得函数的解析式.(2)由,求得sin(α﹣)和cos(α﹣)的值,利用两角和的正弦公式求得sinα的值,再利用二倍角公式求得的值.解答:解:(1)∵是函数y=f(x)的图象的对称轴,∴,∴,…(2分)∵﹣π<ϕ<0,∴,…(4分)故…(6分)(2)因为,所以,.…(8分)故=.…(11分) 故有=.…(14分)点评:本题主要考查利用y=Asin(ωx+∅)的图象特征,由函数y=Asin(ωx+∅)的部分图象求解析式,两角和差的正弦公式的应用,同角三角函数的基本关系,属于中档题. 16.(14分)如图,点P在△ABC内,AB=CP=2,BC=3,∠P+∠B=π,记∠B=α.(1)试用α表示AP的长;(2)求四边形ABCP的面积的最大值,并写出此时α的值.考点:余弦定理.专题:计算题.分析:(1)在三角形ABC中,由AB,BC及cosB,利用余弦定理列出关系式,记作①;在三角形APC中,由AP,PC及cosP,利用余弦定理列出关系式,记作②,由①②消去AC,得到关于AP的方程,整理后可用α表示AP的长;(2)由三角形的面积公式表示出三角形ABC及三角形APC的面积,两三角形面积之差即为四边形ABCP的面积,整理后将表示出的AP代入,根据正弦函数的图象与性质即可求出四边形ABCP的面积的最大值,以及此时α的值.解答:解:(1)△ABC与△APC中,AB=CP=2,BC=3,∠B=α,∠P=π﹣α,由余弦定理得,AC2=22+32﹣2×2×3cosα,①AC2=AP2+22﹣2×AP×2cos(π﹣α),②由①②得:AP2+4APcosα+12cosα﹣9=0,α∈(0,π),解得:AP=3﹣4cosα;(2)∵AP=3﹣4cosα,α∈(0,π),∴S四边形ABCP=S△ABC﹣S△APC=×2×3sinα﹣×2×APsin(π﹣α)=3sinα﹣(3﹣4cosα)sinα=4sinα•cosα=2sin2α,α∈(0,π),则当α=时,Smax=2.点评:此题考查了余弦定理,三角形的面积公式,诱导公式,以及三角函数的性质,熟练掌握定理及公式是解本题的关键. 17.(14分)(xx•宁波模拟)已知f(x)=ax﹣lnx,x∈(0,e],其中e是自然常数,a∈R.(1)当a=1时,求f(x)的单调区间和极值;(2)若f(x)≥3恒成立,求a的取值范围.考点:函数在某点取得极值的条件;函数恒成立问题;利用导数研究函数的单调性.专题:导数的综合应用. 分析:(1)当a=1时,f(x)=x﹣lnx,求出f′(x),在定义域内解不等式f′(x)<0,f′(x)>0即可得到单调区间,由单调性即可得到极值;(2)f(x)≥3恒成立即a≥+恒成立,问题转化为求函数,x∈(0,e]的最大值,利用导数即可求得;解答:解:(1)当a=1时,f(x)=x﹣lnx,f′(x)=1﹣=,当0<x<1时,f′(x)<0,此时f(x)单调递减;当1<x<e时,f′(x)>0,此时f(x)为单调递增.∴当x=1时f(x)取得极小值,f(x)的极小值为f(1)=1,f(x)无极大值;(2)∵f(x)=ax﹣lnx,x∈(0,e],∴ax﹣lnx≥3在x∈(0,e]上恒成立,即a≥+在x∈(0,e]上恒成立,令,x∈(0,e],则,令g′(x)=0,则,当时,f′(x)>0,此时f(x)单调递增,当时,f′(x)<0,此时f(x)单调递减,∴,∴a≥e2,即a的取值范围为a≥e2.点评:本题考查利用导数研究函数的单调性、求函数极值及函数恒成立问题,具有一定综合性,恒成立问题往往转化为函数最值解决. 18.(16分)各项均为正数的数列{an}中,前n项和.(1)求数列{an}的通项公式;(2)若恒成立,求k的取值范围;(3)对任意m∈N*,将数列{an}中落入区间(2m,22m)内的项的个数记为bm,求数列{bm}的前m项和Sm.考点:数列与不等式的综合;数列的求和;等差数列与等比数列的综合.专题:综合题;等差数列与等比数列.分析:(1)由,知,由此得到,由此能能求出an.(2)由,,结合题设条件能求出k的取值范围.(3)对任意m∈N+,2m<2n﹣1<22m,由,能求出数列{bm}的前m项和Sm.解答:解:(1)∵,∴,两式相减得,…(2分)整理得(an+an﹣1)(an﹣an﹣1﹣2)=0,∵数列{an}的各项均为正数, ∴an﹣an﹣1=2,n≥2,∴{an}是公差为2的等差数列,…(4分)又得a1=1,∴an=2n﹣1.…(5分)(2)由题意得,∵,∴=…(8分)∴…(10分)(3)对任意m∈N+,2m<2n﹣1<22m,则,而n∈N*,由题意可知,…(12分)于是=,即.…(16分)点评:本题考查数列的通项公式的求法,考查不等式的证明,考查数列的前m项和的求法,解题时要认真审题,注意等价转化思想的合理运用. 19.(16分)定义在实数集上的函数f(x)满足下列条件:①f(x)是偶函数;②对任意非负实数x、y,都有f(x+y)=2f(x)f(y);③当x>0时,恒有.(1)求f(0)的值;(2)证明:f(x)在[0,+∞)上是单调增函数;(3)若f(3)=2,解关于a的不等式f(a2﹣2a﹣9)≤8.考点:抽象函数及其应用;函数单调性的判断与证明;函数单调性的性质.专题:函数的性质及应用.分析:(1)令x=0,y=1,易由f(x+y)=2f(x)f(y)求出f(0)的值;(2)设0≤x1<x2,根据当x>0时,恒有及f(x)是偶函数,结合函数单调性的定义可判断出f(x)在[0,+∞)上是单调增函数;(3)令x=y=3,则f(6)=8,由(2)中函数的单调性,可将抽象不等式具体为|a2﹣2a﹣9|≤6,解绝对值不等式可得答案.解答:解:(1)解:令x=0,y=1,则f(1)=2f(0)•f(1),∵,∴.…(4分)(2)∵当x>0时,恒有,又f(x)是偶函数,∴当x<0时,,又,f(x)>0恒成立.…(6分)设0≤x1<x2,则x2﹣x1>0,,∴f(x2)=2f(x1)f(x2﹣x1)>f(x1),…(9分)∴f(x)在[0,+∞)上是单调增函数.…(10分)(3)令x=y=3,则f(6)=2f2(3)=8,…(12分) ∴f(a2﹣2a﹣9)=f(|a2﹣2a﹣9|)≤f(6),由f(x)在[0,+∞)上是单调增函数,得|a2﹣2a﹣9|≤6,…(14分)即,解得,∴﹣3≤a≤﹣1或3≤a≤5.…16分点评:本题考查的知识点是抽象函数及其应用,函数单调性的判断与证明,函数单调性的性质,熟练掌握抽象函数“凑”的思想是解答的关键,本题难度中档. 20.(16分)设函数f(x)=ax3+bx2+cx+d是奇函数,且当时,f(x)取得极小值.(1)求函数f(x)的解析式;(2)求使得方程仅有整数根的所有正实数n的值;(3)设g(x)=|f(x)+(3t﹣1)x|,(x∈[﹣1,1]),求g(x)的最大值F(t).考点:利用导数研究函数的单调性;函数解析式的求解及常用方法;函数的零点.专题:综合题;导数的综合应用.分析:(1)由f(x)为奇函数,知b=d=0,由及,知a=﹣1,c=1,由此能求出f(x).(2)由方程,知x2﹣nx+4n=0,由方程仅有整数解,知n为整数,由x2=n(x﹣4)及n>0知,x﹣4>0,由此能求出n.(3)由g(x)=|x3﹣3tx|,x∈[﹣1,1]是偶函数,知只要求出g(x)在[0,1]上的最大值即可.构造函数h(x)=x3﹣3tx,利用导数性质能求出g(x)的最大值F(t).解答:解:(1)∵f(x)为奇函数,∴b=d=0,…(2分)又由及,得a=﹣1,c=1,∴f(x)=﹣x3+x.…(4分)当时,f'(x)<0,当时f'(x)>0,∴f(x)在时取得极小值,∴f(x)=﹣x3+x为所求.…(5分)(2)方程,化简得:x2﹣nx+4n=0,因为方程仅有整数解,故n为整数,又由x2=n(x﹣4)及n>0知,x﹣4>0.…(7分)又,故x﹣4为16的正约数,…(9分)所以x﹣4=1,2,4,8,16,进而得到n=16,18,25.…(10分)(3)因为g(x)=|x3﹣3tx|,x∈[﹣1,1]是偶函数,所以只要求出g(x)在[0,1]上的最大值即可.记h(x)=x3﹣3tx,∵h'(x)=3x2﹣3t=3(x2﹣t),①t≤0时,h'(x)≥0,h(x)在[0,1]上单调增且h(x)≥h(0)=0.∴g(x)=h(x),故F(t)=h(1)=1﹣3t.…(12分)②t>0时,由h'(x)=0得,,和,i.当即t≥1时,h(x)在[0,1]上单调减,∴h(x)≤h(0)=0,故g(x)=﹣h(x),F(t)=﹣h(1)=3t﹣1.…(14分)ii.当即0<t<1时,h(x)在单调减,单调增, (Ⅰ)当,即时,,∴,(Ⅱ)当,即时,,∴F(t)=h(1)=1﹣3t,综上可知,.…(16分)点评:本题考查函数的解析式的求法,考查所有正实数值的求法,考查函数的最大值的求法,解题时时要认真审题,注意等价转化思想的合理运用.
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处