欢迎来到天天文库
浏览记录
ID:45102918
大小:74.30 KB
页数:3页
时间:2019-11-09
《2019-2020年人教A版高中数学必修一 2-2-2 对数函数的图像及其性质 教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年人教A版高中数学必修一2-2-2对数函数的图像及其性质教案一、教学目标:知识技能(1)理解对数函数的概念.(2)掌握对数函数的性质.了解对数函数在生产实际中的简单应用.过程与方法(1)培养学生数学交流能力和与人合作精神.(2)用联系的观点分析问题.通过对对数函数的学习,渗透数形结合的数学思想.情感、态度与价值观(1)通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣.(2)在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极
2、性,同时培养学生倾听、接受别人意见的优良品质.二、重点难点重点:对数函数的定义、图象和性质;难点:底数a对图象的影响.三、教学方法通过让学生观察、思考、交流、讨论、发现对数函数的图象的特点.四、教学过程(1)情景导学;师:如2.2.1的例6,考古学家一般通过提取附着在出土文物、古遗址上死亡物体的残留物,利用t=logP估算出土文物或古遗址的年代.根据问题的实际意义可知,对于每一个碳14含量P,通过对应关系t=logP,都有唯一确定的年代t与它对应,所以,t是P的函数.设计意图:由实际问题引入,不仅能激发学生的学习兴趣,而且可以培
3、养学生解决实际问题的能力(2)问题探究:对数函数概念一般地,函数y=logax(a>0,且a≠1)叫做对数函数,由对数概念可知,对数函数y=logax的定义域是(0,+∞),值域是R.探究1:(1)在函数的定义中,为什么要限定>0且≠1.(2)为什么对数函数(>0且≠1)的定义域是(0,+∞).探究2.对数函数的图象.借助于计算器或计算机在同一坐标系中画出下列两组函数的图象,并观察各组函数的图象,探求它们之间的关系.(1)y=2x,y=log2x;(2)y=()x,y=logx.2.当a>0,a≠1时,函数y=ax,y=loga
4、x的图象之间有什么关系?对数函数图象有以下特征图象的特征(1)图象都在轴的右边(2)函数图象都经过(1,0)点(3)从左往右看,当>1时,图象逐渐上升,当0<<1时,图象逐渐下降.(4)当>1时,函数图象在(1,0)点右边的纵坐标都大于0,在(1,0)点左边的纵坐标都小于0.当0<<1时,图象正好相反,在(1,0)点右边的纵坐标都小于0,在(1,0)点左边的纵坐标都大于0.对数函数有以下性质0<a<1a>1图象定义域(0,+∞)值域R(1)过定点(1,0),即x=1时,y=0性质(2)在(0,+∞)(2)在(0,+∞)上是增函数
5、上是减函数设计意图:由特殊到一般,培养学生的观察、归纳、概括的能力.例1求下列函数的定义域:(1)y=log2ax;(2)y=loga(a>0,a≠1)解:(1)由x2>0,得x≠0.∴函数y=log2ax的定义域是{x
6、x≠0}.(2)由题意可得>0,又∵偶次根号下非负,∴x-1>0,即x>1.∴函数y=loga(a>0,a≠1)的定义域是{x
7、x>1}.小结:求函数的定义域的本质是解不等式或不等式组.例2求证:函数f(x)=lg是奇函数.证明:设f(x)=lg,由>0,得x∈(-1,1),即函数的定义域为(-1,1),又对于
8、定义域(-1,1)内的任意的x,都有f(-x)=lg=-lg=-f(x),所以函数y=lg是奇函数.注意:函数奇偶性的判定不能只根据表面形式加以判定,而必须进行严格的演算才能得出正确的结论.例3溶液酸碱度的测量.溶液酸碱度是通过pH刻画的.pH的计算公式为pH=-lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升.(1)根据对数函数性质及上述pH的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;(2)已知纯净水中氢离子的浓度为[H+]=10-7摩尔/升,计算纯净水的pH.解:根据对数的运算性质,有pH=
9、-lg[H+]=lg[H+]-1=lg.在(0,+∞)上,随着[H+]的增大,减小,相应地,lg也减小,即pH减小.所以,随着[H+]的增大,pH减小,即溶液中氢离子的浓度越大,溶液的酸度就越小.(2)当[H+]=10-7时,pH=-lg10-7,所以纯净水的pH是7.事实上,食品监督监测部门检测纯净水的质量时,需要检测很多项目,pH的检测只是其中一项.国家标准规定,饮用纯净水的pH应该在5.0~7.0之间.五、课堂小结1.对数函数的定义.2.对数函数的图象和性质.六、课后作业课时练与测七、教学反思备选例题;例1求函数的定义域.
10、【解析】由,得.∴所求函数定义域为{x
11、–1<x<0或0<x<2}.【小结】求与对数函数有关的定义域问题,首先要考虑真数大于零,底数大于零且不等于1.例2求函数y=log2
12、x
13、的定义域,并画出它的图象.【解析】函数的定义域为{x
14、x≠0,x∈R}.函数解析式可
此文档下载收益归作者所有