资源描述:
《理科数学高考立体几何大题 精选》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、理科数学高考立体几何大题精选不建系求解1.本小题满分12分)(注意:在试题卷上作答无效)如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.2.(本小题满分12分)(注意:在试题卷上作答无效)如图,四棱锥中,底面为矩形,底面,,,点M在侧棱上,=60°(I)证明:M在侧棱的中点(II)求二面角的大小。3.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(I)
2、求证:(II)4.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥中,,,为的中点,.(1)求的长;(2)求二面角的正弦值.5.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))如图,在四面体中,平面,.是的中点,是的中点,点在线段上,且.(1)证明:平面;(2)若二面角的大小为,求的大小.6.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))如图1,在等腰直角三角形中,,,分别是上的点,,为的中点.将沿折起,得到如图2所示的四棱锥,其中.(Ⅰ)证明:平面;(Ⅱ)求二面角的平面角的余弦值.7.(2013年高考陕西
3、卷(理))如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,.(Ⅰ)证明:A1C⊥平面BB1D1D;(Ⅱ)求平面OCB1与平面BB1D1D的夹角的大小.8.(2013年高考四川卷(理))如图,在三棱柱中,侧棱底面,,,分别是线段的中点,是线段的中点.(Ⅰ)在平面内,试作出过点与平面平行的直线,说明理由,并证明直线平面;(Ⅱ)设(Ⅰ)中的直线交于点,交于点,求二面角的余弦值.9.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))本小题满分10分.如图,在直三棱柱中,,,,点是的中点(1)求异面直线与所
4、成角的余弦值(2)求平面与所成二面角的正弦值.10.(2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))如图,四棱锥中,与都是等边三角形.(I)证明:(II)求二面角的大小.11.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))如图所示,在三棱锥中,平面,,分别是的中点,,与交于点,与交于点,连接.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值.12.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))如图,直棱柱中,分别是的中点,.(Ⅰ)证明:平面;(Ⅱ)求二面角的正弦值.13.(2013年高考北京卷(理))如图,在三棱
5、柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求二面角A1-BC1-B1的余弦值;(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.