资源描述:
《 甘青宁2019届高三3月联考数学(文)试题(含答案解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高三数学考试(文科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列格式的运算结果为实数的是()A.B.C.D.【答案】D【解析】【分析】利用复数运算化简每个选项即可求解【详解】对A,对B,对C,对D,故选:D【点睛】本题考查复数的运算,熟记运算法则是关键,是基础题2.设集合,则集合可以为()A.B.C.D.【答案】C【解析】【分析】首先根据一元二次不等式的解法求得集合B,之后根据集合交集中元素的特征,选择正确的结果.【详解】因为,所以当时,,故选D.【点睛】该题考查的是有关集合的
2、运算,属于简单题目.3.在平行四边形中,,,则点的坐标为()A.B.C.D.【答案】A【解析】【分析】先求,再求,即可求D坐标【详解】,∴,则D(6,1)故选:A【点睛】本题考查向量的坐标运算,熟记运算法则,准确计算是关键,是基础题4.若函数,则()A.2B.4C.-2D.-4【答案】A【解析】【分析】,可得,结合,从而求得结果.【详解】∵,∴,∵,∴,故选A.【点睛】该题考查的是有关函数值的求解问题,在解题的过程中,涉及到的知识点有奇函数的性质,属于简单题目,注意整体思维的运用.5.从某小学随机抽取名同学,将他们的身高(单位:厘米)分布情况汇总如下:
3、身高频数535302010有此表估计这名小学生身高的中位数为(结果保留4位有效数字)()A.B.C.D.【答案】C【解析】【分析】由表格数据确定每组的频率,由中位数左右频率相同求解即可.【详解】由题身高在,的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x,则,解x=123.3故选:C【点睛】本题考查中位数计算,熟记中位数意义,准确计算是关键,是基础题.6.如图,某瓷器菜盘的外轮廓线是椭圆,根据图中数据可知该椭圆的离心率为()A.B.C.D.【答案】B【解析】【分析】分析图知2a,2b,则e可求.【详解】由题2b=1
4、6.4,2a=20.5,则则离心率e=.故选:B.【点睛】本题考查椭圆的离心率,熟记a,b的几何意义是关键,是基础题.7.设满足约束条件则的最大值为()A.7B.5C.0D.【答案】A【解析】【分析】作出约束条件对应的可行域,利用线性规划的知识,通过平移即可求得的最大值.【详解】如图,作出约束条件表示的可行域,由图可知,当直线经过点时,取得最大值7,故选A.【点睛】该题考查的是有关线性规划的问题,注意目标函数的形式,属于简单题目.8.在中,为边上一点,若,,,,则()A.B.C.D.【答案】B【解析】【分析】首先利用余弦定理,结合题中所给的边长,求得,
5、从而求得,之后应用余弦定理求得BC的长度,得到结果.【详解】由余弦定理可得,则,,故选B.【点睛】该题所考查的是有关解三角形的问题,涉及到的知识点有余弦定理,诱导公式,属于简单题目.9.汉朝时,张衡得出圆周率的平方除以16等于.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为A.32B.40C.D.【答案】C【解析】【分析】将三视图还原,即可求组合体体积【详解】将三视图还原成如图几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积为,利用张衡的结论可得故选:C【点睛】本
6、题考查三视图,正确还原,熟记圆柱圆锥的体积是关键,是基础题10.若直线与曲线相切,则()A.3B.C.2D.【答案】A【解析】【分析】设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【详解】设切点为,∵,∴由①得,代入②得,则,,故选A.【点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.11.已知函数,则下列判断错误的是()A.为偶函数B.的图像关于直线对称C.的值域为D.的图像关于点对称【答案】D【解析】【分析】化简f(x)=1+2
7、cos4x后,根据函数的性质可得.【详解】f(x)=1+cos(4x)sin(4x)=1+2sin(4x)=1+2cos4x,f(x)为偶函数,A正确;4x得,当k=0时,B正确;因为2cos4x的值域为,C正确;故D错误.故选:D.【点睛】本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,准确计算是关键,是基础题12.在棱长为的正方体中,为棱上一点,且到直线与的距离相等,四面体的每个顶点都在球的表面上,则球的表面积为()A.B.C.D.【答案】D【解析】【分析】由题,先确定F的位置,由互相垂直,构造以为棱的长方体,求其外接球半径即
8、可求得球的表面积【详解】过做面B,∴面NF,∴FN为到直线的距离,则,设解得x=,互相垂直,以