欢迎来到天天文库
浏览记录
ID:45072615
大小:447.50 KB
页数:7页
时间:2019-11-09
《2019-2020年高三一模考前训练数学(文)试题(二) 含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高三一模考前训练数学(文)试题(二)含答案说明:本试卷分为第I卷(选择题)和第II卷(非选择题)两部分.全卷满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知全集U=R,集合A、B、C、D、2.为正实数,为虚数单位,,则A.B.2C.D.13.命题“”的否定为A.B.C.D.4.如右图所示的程序框图的输出值y∈(1,2],则输入值x的取值范围为A.(-,-1]∪[1,3)B.(-1,-]∪[1,2)C.[-1,-)∪(1,
2、2]D.[-,-1)∪(1,3]5.已知等比数列{}中,各项都是正数,且,成等差数列,则A.B.C.D.6.若函数f(x)、g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=,则有A.f(2)<f(3)<g(0)B.g(0)<f(3)<f(2)C.f(2)<g(0)<f(3)D.g(0)<f(2)<f(3)7.若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为A.B.C.D.8.在区间上随机取一个数的值介于于0到之间的概率为A.B.C.D.9.已知ABCD的三个顶点为A(-1,2),B(
3、3,4),C(4,-2),点(x,y)在ABCD的内部,则z=2x-5y的取值范围是A.(-14,16)B.(-14,20)C.(-12,18)D.(-12,20)10.已知函数f(x)=-2x,g(x)=ax+2(a>0),若∈[-1,2],∈[-1,2],使得f(x1)=g(x2),则实数a的取值范围是A.(0,]B.[,3]C.(0,3]D.[3,+∞)11.抛物线的焦点为F,倾斜角为的直线过点F且与抛物线的一个交点为A,,则抛物线的方程为A.B.C.或D.或12.已知函数的零点依次为a,b,c,则()A.B.C.D.第Ⅱ卷本
4、卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须做答。第22题~第24题为选考题,考生根据要求做答。二、填空题:本大题共4小题,每小题5分。13.设曲线y=在点(1,1)处的切线与直线ax+y+1=0垂直,则a=_________14.已知sin(α+)=,则sin2α=____________.15.若平面向量α,β满足
5、α
6、=1,
7、β
8、≤1,且以向量α,β为邻边的平行四边形的面积为,则α与β的夹角θ的取值范围是________16.函数f(x)=+b+cx+d在区间[-1,2]上是减函数,则b+c的最大
9、值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤17.已知等比数列的公比,前3项和.(Ⅰ)求数列的通项公式;(Ⅱ)若函数在处取得最大值,且最大值为,求函数的解析式.18.(本小题满分12分)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示.(1)上表是年龄的频数分布表,求正整数的值;(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3
10、组的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.19.(本小题满分12分)四棱锥P-ABCD中,,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.(Ⅰ)求证:PA∥面EFG;(Ⅱ)求三棱锥P-EFG的体积.20.已知椭圆C:(a>b>0)的离心率为,且过点P(1,),F为其右焦点.(Ⅰ)求椭圆C的方程;(Ⅱ)设过点A(4,0)的直线l与椭圆相交于M、N两点(点M在A,N两点之间),若△AMF与△MFN的面积相等,
11、试求直线l的方程.21.设函数f(x)=alnx+-2x,a∈R.(Ⅰ)当a=1时,试求函数f(x)在区间[1,e]上的最大值;(Ⅱ)当a≥0时,试求函数f(x)的单调区间.选考题(请考生在22,23,24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B铅笔在答题卡把所选题目的题号涂黑)22.(本小题满分10分)选修4-1:几何证明选讲如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于D,DE⊥AC交AC延长线于点E,OE交AD于点F(1)求证:DE是⊙O的切线;(2)若=,求的值.23.(本小题满分10
12、分)选修4—4:坐标系与参数方程已知极点与坐标原点重合,极轴与x轴非负半轴重合,M是曲线C:ρ=4sinθ上任意一点,点P满足=3,设点P的轨迹为曲线Q.(Ⅰ)求曲线Q的方程;(Ⅱ)设曲线Q与直线l:(t为参数)相交于A,B两点且|A
此文档下载收益归作者所有