资源描述:
《matlab用户图形界面设计GUI》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数学实验ExperimentsinMathematics微分方程实验目的实验内容MATLAB2、学会用Matlab求微分方程的数值解.实验软件1、学会用Matlab求简单微分方程的解析解.1、求简单微分方程的解析解.4、实验作业.2、求微分方程的数值解.3、数学建模实例求微分方程的数值解(一)常微分方程数值解的定义(二)建立数值解法的一些途径(三)用Matlab软件求常微分方程的数值解返回1、目标跟踪问题一:导弹追踪问题2、目标跟踪问题二:慢跑者与狗3、地中海鲨鱼问题返回数学建模实例微分方程的解析解求微分方程(组)的解析解命令:dsolve(‘方程1’,‘方程2’,…‘方程n’
2、,‘初始条件’,‘自变量’)ToMatlab(ff1)结果:u=tg(t-c)解输入命令:y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x')结果为:y=3e-2xsin(5x)ToMatlab(ff2)解输入命令:[x,y,z]=dsolve('Dx=2*x-3*y+3*z','Dy=4*x-5*y+3*z','Dz=4*x-4*y+2*z','t');x=simple(x)%将x化简y=simple(y)z=simple(z)结果为:x=(c1-c2+c3+c2e-3t-c3e-3t)e2ty=-c1e-4t+c2e-4t+c2
3、e-3t-c3e-3t+c1-c2+c3)e2tz=(-c1e-4t+c2e-4t+c1-c2+c3)e2tToMatlab(ff3)返回微分方程的数值解(一)常微分方程数值解的定义在生产和科研中所处理的微分方程往往很复杂且大多得不出一般解。而在实际上对初值问题,一般是要求得到解在若干个点上满足规定精确度的近似值,或者得到一个满足精确度要求的便于计算的表达式。因此,研究常微分方程的数值解法是十分必要的。返回(二)建立数值解法的一些途径1、用差商代替导数若步长h较小,则有故有公式:此即欧拉法。2、使用数值积分对方程y’=f(x,y),两边由xi到xi+1积分,并利用梯形公式,有:
4、实际应用时,与欧拉公式结合使用:此即改进的欧拉法。故有公式:3、使用泰勒公式以此方法为基础,有龙格-库塔法、线性多步法等方法。4、数值公式的精度当一个数值公式的截断误差可表示为O(hk+1)时(k为正整数,h为步长),称它是一个k阶公式。k越大,则数值公式的精度越高。欧拉法是一阶公式,改进的欧拉法是二阶公式。龙格-库塔法有二阶公式和四阶公式。线性多步法有四阶阿达姆斯外插公式和内插公式。返回(三)用Matlab软件求常微分方程的数值解[t,x]=solver(’f’,ts,x0,options)ode45ode23ode113ode15sode23s由待解方程写成的m-文件名ts
5、=[t0,tf],t0、tf为自变量的初值和终值函数的初值ode23:组合的2/3阶龙格-库塔-芬尔格算法ode45:运用组合的4/5阶龙格-库塔-芬尔格算法自变量值函数值用于设定误差限(缺省时设定相对误差10-3,绝对误差10-6),命令为:options=odeset(’reltol’,rt,’abstol’,at),rt,at:分别为设定的相对误差和绝对误差.1、在解n个未知函数的方程组时,x0和x均为n维向量,m-文件中的待解方程组应以x的分量形式写成.2、使用Matlab软件求数值解时,高阶微分方程必须等价地变换成一阶微分方程组.注意:解:令y1=x,y2=y1’1、
6、建立m-文件vdp1000.m如下:functiondy=vdp1000(t,y)dy=zeros(2,1);dy(1)=y(2);dy(2)=1000*(1-y(1)^2)*y(2)-y(1);2、取t0=0,tf=3000,输入命令:[T,Y]=ode15s('vdp1000',[03000],[20]);plot(T,Y(:,1),'-')3、结果如图ToMatlab(ff4)解1、建立m-文件rigid.m如下:functiondy=rigid(t,y)dy=zeros(3,1);dy(1)=y(2)*y(3);dy(2)=-y(1)*y(3);dy(3)=-0.51*
7、y(1)*y(2);2、取t0=0,tf=12,输入命令:[T,Y]=ode45('rigid',[012],[011]);plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')3、结果如图ToMatlab(ff5)图中,y1的图形为实线,y2的图形为“*”线,y3的图形为“+”线.返回导弹追踪问题设位于坐标原点的甲舰向位于x轴上点A(1,0)处的乙舰发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度v0(是常数)沿平行于y轴的直线行驶,导弹的速度是5v0,