超疏水高分子薄膜的构建

超疏水高分子薄膜的构建

ID:44895748

大小:3.33 MB

页数:11页

时间:2019-11-01

超疏水高分子薄膜的构建_第1页
超疏水高分子薄膜的构建_第2页
超疏水高分子薄膜的构建_第3页
超疏水高分子薄膜的构建_第4页
超疏水高分子薄膜的构建_第5页
资源描述:

《超疏水高分子薄膜的构建》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、《功能高分子》课程论文超疏水高分子薄膜的构建摘要:超疏水表面可表现出防水、防雾、抗氧化、自清洁等重要特性,具有广泛研究前景。对自然界中的“荷叶效应”的仿生研究认为,超疏水性的获得来源于粗糙表面及疏水物质,通常可通过刻蚀、印刷、自组装等方式获得粗糙表面,也可表面化学修饰镀上疏水分子膜。本文就超疏水高分子膜的构建,介绍了含氟聚合物、蜂窝状大分子及电纺技术在构建超疏水大分子膜方面新的思路与探索。关键词:超疏水表面;高分子膜;含氟聚合物;自组装;同轴电纺超疏水表面一般指与水接触角(WCA)大于150°、滑动角(SA)小于10°的表面。超疏水表面技术的理论研究始于20世纪40年代,来源于对大自然中植物

2、与一些自然现象的认识,最典型的就是荷叶的超疏水性和自清洁功能。而由于超疏水膜在防水、自净、减阻降噪和光电材料等方面巨大的应用前景,90年代以来引起了广泛关注。1.超疏水表面的构建植物叶表面具有自清洁效果,以荷叶为代表,称为“荷叶效应”。对荷叶表面的研究认为,这种自清洁特征是由粗糙的表面和疏水蜡状物质共同引起的。中科院江雷课题组[1]研究发现,在荷叶表面微米结构的乳突上还存在纳米结构,这种微米-纳米相复合的阶层结构是引起超疏水的根本原因,并通过实验证明,单纯的微米或纳米结构虽然可以使表面产生超疏水性,但水滴在表面上不易滚动。(a)(b)(c)图1[2]荷叶表面微米-纳米复合结构:(a):荷叶表

3、面疏水性照片;(b):荷叶表面微米球SEM放大图-表层纳米粒子分布;(c):荷叶表面微米球结构SEM图。大量的研究使材料研究者基本形成一个共识:材料表面润湿性通常取决于材料的表面形貌(表面粗糙度)和材料的表面化学性质。这也为超疏水表面的构建11《功能高分子》课程论文提供了两种可能途径:一种是在疏水性材料表面构造合适的粗糙度,另一种是在具有合适粗糙度的材料表面用低表面能化学物质进行化学修饰。构造表面粗糙度的方法有很多,包括机械拉伸、激光/等离子/化学刻蚀、印刷、溶胶-凝胶过程、溶液铸造、层叠层、胶体组装、电化学沉积等;表面化学修饰主要是利用自组装和物理化学沉积等,如含羟基基地表面硅烷偶联剂的自

4、组装等,可以改变基底的表面化学性质。(1)刻蚀与印模刻蚀是一种最直接和有效构造粗糙表面的方法,不同的刻蚀方法有等离子刻蚀、激光刻蚀和化学刻蚀,这些方法都被大量使用在构造仿生超疏水性表面上。对于构造大面积周期性微米-纳米图案,印刷是一中很好的解决方案,如光印刷、电子束印刷、纳米球印刷等。(2)溶胶-凝胶处理对于许多材料,溶胶-凝胶处理可以使其表面呈现出超疏水性能,而且绝大多数研究结果表明,溶胶-凝胶过程后无须再经过疏水后处理,表面就可以实现超疏水性能,因为低表面自由能材料在溶胶-凝胶处理过程中就存在。Chen等[3]将模板法与溶胶-凝胶技术结合,在玻璃基底上构筑了镶嵌二氧化硅纳米粒子的规则柱状

5、图案二氧化硅的超疏水层。首先在单晶硅片上利用光刻技术刻蚀出规则柱状图案,再将PDMS前驱体覆盖于硅片上制得带有规则柱状图案的PDMS软模板。利用PDMS软模板及二氧化硅溶胶-凝胶前驱体即可制得一系列带规则柱状图案的二氧化硅超疏水膜,示意图如图2(a)所示。图2(b)即为PDMS软模板SEM图,可以看出规则的正方形图案排布,(c)为最终印制的镶嵌有纳米SiO2球的规则图案排列的SiO2超疏水膜的SEM图。镶嵌有纳米SiO2球使得二氧化硅膜显示出微米-纳米复合结构,使二氧化硅膜的疏水性能大为提高。文章中还提到了一种可以制备二氧化硅超疏水膜的方法,即以镶嵌有纳米SiO2球的规则图案排列的SiO2超

6、疏水膜为基底,可制得含微米-纳米复合结构的PDMS软模板,用于印制简单的二氧化硅溶胶-凝胶前驱体,得到微米-纳米复合结构的二氧化硅薄膜,再通过自组装镀上FTS单分子层,也可得到超疏水性能优异的二氧化硅薄膜。11《功能高分子》课程论文(a)(b)(c)图2[3]模板法/溶胶-凝胶法结合制备SiO2超疏水薄膜:(a):制备方法示意图;(b):PDMS软模板SEM图;(c):镶嵌纳米SiO2粒子规则柱状图案SiO2层的SEM图。(3)自组装自组装技术能在分子水平上构造均匀的薄膜涂层,其最大优点是能够借助分子间静电相互作用和氢键相互作用控制薄膜的厚度和薄膜表面化学性质。利用自组装技术能构造粗糙的超疏

7、水性表面,还能达到一定的功能性,如pH响应,温度响应等。XuXiaoliang等[4]在单晶硅片上通过离子溅射镀上10nmZnO晶种,而后通过水热合成,利用Zn(CH3COO)2水解形成ZnO晶体过程中自组装在含ZnO晶种的硅片上,形成均匀沉积的ZnO纳米线薄膜。薄膜经过去离子水浸渍,形成网状乳突结点结构,这种微-纳米复合结构也显示出超疏水性,静态水接触角可达170°,如图3(a),(b)所示。图3(c)为形

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。