欢迎来到天天文库
浏览记录
ID:44892628
大小:421.00 KB
页数:12页
时间:2019-11-01
《三年高考2015_2017高考数学试题分项版解析专题5双曲线文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题15双曲线1.【2017课表1,文5】已知F是双曲线C:的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为A.B.C.D.【答案】D【考点】双曲线【名师点睛】本题考查圆锥曲线中双曲线的简单运算,属容易题.由双曲线方程得,结合PF与x轴垂直,可得,最后由点A的坐标是(1,3),计算△APF的面积.2.【2017课标II,文5】若,则双曲线的离心率的取值范围是A.B.C.D.【答案】C【解析】由题意,因为,所以,则,故选C.【考点】双曲线离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系
2、消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.3.【2017天津,文5】已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为(A)(B)(C)(D)12【答案】【解析】试题分析:由题意结合双曲线的渐近线方程可得:,解得:,双曲线方程为:,本题选择D选项.【考点】双曲线方程【名师点睛】本题主要考查的是双曲线的标准方程和双曲线的简单几何性质,属于基础题.解题时要注意、、的关系,否则很容易出现错误.解本题首先画图,掌握题中所给的几何关系,再结合双曲线的一些几何性质,得到的关系,联立方程,求得的
3、值。4.【2015高考湖南,文6】若双曲线的一条渐近线经过点(3,-4),则此双曲线的离心率为()A、B、C、D、【答案】D【考点定位】双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线共渐近线的可设为;(2)若渐近线方程为,则可设为;(3)双曲线的焦点到渐近线的距离等于虚半轴长;(4)的一条渐近线的斜率为.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.125.【2015高考安徽,文6】下列
4、双曲线中,渐近线方程为的是()(A)(B)(C)(D)【答案】A【考点定位】本题主要考查双曲线的渐近线公式.【名师点睛】在求双曲线的渐近线方程时,考生一定要注意观察双曲线的交点是在轴,还是在轴,选用各自对应的公式,切不可混淆.6.【2014天津,文6】已知双曲线的一条渐近线平行于直线双曲线的一个焦点在直线上,则双曲线的方程为()A.B.C.D.【答案】A【解析】A试题分析:因为双曲线的渐近线方程为,所以,又所以双曲线的方程为,选A.考点:双曲线的渐近线【名师点睛】本题考查抛物线与双曲线的几何性质,重点考查待定系数法求双曲线的方程,本题属于基础题,正确利用双曲线线的渐进线与直线平
5、行,斜率相等,列出的一个关系式,直线与轴交点为双曲线的一个焦点,求出,借助,联立方程组,求出,即可.待定系数法求双曲线的标准方程时,注意利用题目的已知条件,布列关于的方程,还要借助,正确解出的值.7.【2015高考天津,文5】已知双曲线的一个焦点为12,且双曲线的渐近线与圆相切,则双曲线的方程为()(A)(B)(C)(D)【答案】D【考点定位】圆与双曲线的性质及运算能力.【名师点睛】本题是圆与双曲线的交汇题,虽有一定的综合性,但方法容易想到,仍属于基础题.不过要注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不
6、好的主要原因.8.【2014年普通高等学校招生全国统一考试湖北卷8】设、是关于的方程的两个不等实根,则过,两点的直线与双曲线的公共点的个数为()A.0B.1C.2D.3【答案】A【解析】试题分析:依题意,,过,两点的直线斜率为,不妨设,故,,所以直线的方程为.又因为双曲线的渐近线方程为,显然直线是双曲线的一条渐近线,所以直线与双曲线无交点,故选A.考点:一元二次方程的根与系数关系,直线的斜率,双曲线的性质,直线与双曲线的位置关系,中等题.12【名师点睛】将一元二次方程的根、直线的方程和双曲线的性质等内容融合在一起,凸显了知识之间的联系性、综合性,体现了方程的数学思想在实际问题中
7、的应用,能较好的考查学生的综合能力.9.【2015高考湖北,文9】将离心率为的双曲线的实半轴长和虚半轴长同时增加个单位长度,得到离心率为的双曲线,则()A.对任意的,B.当时,;当时,C.对任意的,D.当时,;当时,【答案】.,所以,所以,所以;当时,,所以,所以,所以;故应选.【考点定位】本题考查双曲线的定义及其简单的几何性质,考察双曲线的离心率的基本计算,涉及不等式及不等关系.【名师点睛】将双曲线的离心率的计算与初中学习的溶液浓度问题联系在一起,突显了数学在实际问题中实用性和重要性,充分
此文档下载收益归作者所有