欢迎来到天天文库
浏览记录
ID:44867481
大小:53.50 KB
页数:6页
时间:2019-10-31
《高中数学09-直线、平面、简单几何体09》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、直线和平面平行的判定与性质(二) 一、素质教育目标(一)知识教学点直线和平面平行的性质定理.(二)能力训练点用转化的方法掌握应用直线与平面平行的性质定理,即由线面平行可推得线线平行.(三)德育渗透点让学生认识到研究直线和平面平行的性质定理是实际生产的需要,充分体现了理论联系实际的原则.二、教学重点、难点、疑点及解决方法1.教学重点:直线和平面平行的性质定理.2.教学难点:直线和平面平行的性质定理的证明及应用.理4,平面α内与b平行的所有直线都与a平行(有无数条).否则,都与a是异面直线.三、课时安排1.7直线和平面的位置关系和1.8直线和平面平行的判定与性质
2、这两个课题安排为2课时,本节课为第二课时,讲解直线和平面平行的性质定理.四、教与学过程设计(一)复习直线和平面的位置关系及直线和平面平行的判定(幻灯显示)师:直线和平面的位置关系有哪几种?生:有三种位置关系:直线在平面内,直线与平面相交,直线与平面平行.直线与平面相交或平行统称为直线在平面外.第6页共6页直线在平面内,说明直线与平面有无数个公共点;直线与平面相交,说明直线与平面只有1个公共点;直线与平面平行,说明直线与平面没有公共点.师:直线和平面的判定方法有哪几种?生:两种.第一种根据定义来判定,一般用反证法.第二种根据判定定理来判定:只要在平面内找出一条
3、直线和已知直α,a∥b,则a∥α.(二)直线和平面平行的性质师:命题“若直线a平行于平面α,则直线a平行于平面α内的一切直线.”对吗?(幻灯显示)生:不对.师:为什么不对?(出示教具演示)平行的所有直线(为b′,b″)都与a平行(有无数条),否则,都与a是异面直线.第6页共6页师:在上面的论述中,平面α内的直线b满足什么条件时,可以与直线a平行呢?我们有下面的性质.直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.求证:a∥b.师提示:要证明同一平面β内的两条直线a、b平行,可用反证法,也可用直
4、接证法.证明:(一)反证法.假设直线a不平行于直线b.∴直线a与直线b相交,假设交点为O,则a∩b=O.∴a∩α=O,这与“a∥α”矛盾.∴a∥b.(二)直接证法∵a∥α,∴a与α没有公共点.第6页共6页∴a与b没有公共点.a和b同在平面β内,又没有公共点,∴a∥b.下面请同学们完成例题与练习.(三)练习例2 有一块木料如图1-65,已知棱BC平行于面A′C′.要经过木料表面A′B′C′D′内的一点P和棱BC将木料锯开,应怎样画线?所画的线和面AC有什么关系?解:(1)∵BC∥面A′C′,面BC′经过BC和面A′C′交于B′C′,∴BC∥B′C′.经过点P,
5、在面A′C′上画线段EF∥B′C′,由公理4,得:EF∥BC.的线.(2)∵EF∥BC,根据判定定理,则EF∥面AC;BE、CF显然都和面AC相交.总结:解题时,应用直线和平面平行的性质定理,要注意把线面平行转化为线线平行.练习:(P.22中练习3)第6页共6页在例题的图中,如果AD∥BC,BC∥面A′C′,那么,AD和面BC′、面BF、面A′C′都有怎样的位置关系.为什么?∥面BC′.同理AD∥面BF.又因为BC∥面A′C′,过BC的面EC与面A′C′交于EF,(四)总结本节课我们复习了直线和平面平行的判定,学习了直线和平面平行的性质定理.性质定理的实质是
6、线面平行,过已知直线作一平面和已知直线都与已知直线平行.五、作业P.22—23中习题三5、6、7、8.六、板书设计直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.性质定理的证明:求证:a∥b.例:第6页共6页有一块木料,已知棱BC平行于面A′C′,要经过木料表面A′B′C′D′内的一点P和棱BC将木料锯开,应怎样画线?所画的线和面AC有什么关系?练习:在例中,若AD∥BC,BC∥面A′C′,那么,AD和面BC′、面BF、面A′C′都有怎样的位置关系,为什么? 第6页共6页
此文档下载收益归作者所有