欢迎来到天天文库
浏览记录
ID:44802290
大小:189.00 KB
页数:5页
时间:2019-10-29
《1圆柱弹簧的参数及几何 尺寸》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、1圆柱弹簧的参数及几何尺寸1、弹簧的主要尺寸如图所示,圆柱弹簧的主要尺寸有:弹簧丝直径d、弹簧圈外径D、弹簧圈内径D1,弹簧圈中径D2,节距t、螺旋升角a、自由长度H0等。2、弹簧参数的计算弹簧设计中,旋绕比(或称弹簧指数)C是最重要的参数之一。C=D2/d,弹簧指数愈小,其刚度愈大,弹簧愈硬,弹簧内外侧的应力相差愈大,材料利用率低;反之弹簧愈软。常用弹簧指数的选取参见表。弹簧丝直径d(mm)0.2~0.40.5~11.1~2.22.5~67~1618~40C7~145~125~104~104~
2、84~6弹簧总圈数与其工作圈数间的关系为:弹簧节距t一般按下式取:(对压缩弹簧);t=d(对拉伸弹簧);式中:λmax---弹簧的最大变形量;Δ---最大变形时相邻两弹簧丝间的最小距离,一般不小于0.1d。弹簧钢丝间距: δ=t-d;弹簧的自由长度: H=n·δ+(n0-0.5)d(两端并紧磨平); H=n·δ+(n0+1)d(两端并紧,但不磨平)。弹簧螺旋升角:,通常α取5~90。弹簧丝材料的长度:(对压缩弹簧);(对拉伸弹簧);其中l为钩环尺寸。2弹簧的强度计算1、弹
3、簧的受力图示的压缩弹簧,当弹簧受轴向压力F时,在弹簧丝的任何横剖面上将作用着:扭矩T=FRcosα,弯矩M=FRsinα,切向力Q=Fcosα和法向力N=Fsinα(式中R为弹簧的平均半径)。由于弹簧螺旋角α的值不大(对于压缩弹簧为6~90),所以弯矩M和法向力N可以忽略不计。因此,在弹簧丝中起主要作用的外力将是扭矩T和切向力Q。α的值较小时,cosα≈1,可取T=FR和Q=F。这种简化对于计算的准确性影响不大。当拉伸弹簧受轴向拉力F时,弹簧丝槽剖面上的受力情况和压缩弹簧相同,只是扭矩T和切向力
4、Q均为相反的方向。所以上述两种弹簧的计算方法可以一并讲述。2、弹簧的强度从受力分析可见,弹簧受到的应力主要为扭矩和横向力引起的剪应力,对于圆形弹簧丝系数Ks可以理解为切向力作用时对扭应力的修正系数,进一步考虑到弹簧丝曲率的影响,可得到扭应力式中K为曲度系数。它考虑了弹簧丝曲率和切向力对扭应力的影响。一定条件下钢丝直径3、弹簧的刚度圆柱弹簧受载后的轴向变形量式中n为弹簧的有效圈数;G为弹簧的切变模量。这样弹簧的圈数及刚度分别为对于拉伸弹簧,n1>20时,一般圆整为整圈数,n1<20时,可圆整为1/
5、2圈;对于压缩弹簧总圈数n1的尾数宜取1/4、1/2或整圈数,常用1/2圈。为了保证弹簧具有稳定的性能,通常弹簧的有效圈数最少为2圈。C值大小对弹簧刚度影响很大。若其它条件相同时,C值愈小的弹簧,刚度愈大,弹簧也就愈硬;反之则愈软。不过,C值愈小的弹簧卷制愈困难,且在工作时会引起较大的切应力。此外,k值还和G、d、n有关,在调整弹簧刚度时,应综合考虑这些因素的影响。4、稳定性计算压缩弹簧的长度较大时,受载后容易发生图a)所示的失稳现象,所以还应进行稳定性的验算。图a 图b
6、 图c为了便于制造和避免失稳现象出现,通常建议弹簧的长径比b=H0/D2按下列情况取为:弹簧两端均为回转端时,b≤2.6;弹簧两端均为固定端时,b≤5.3;弹簧两端一端固定而另一端回转时,b≤3.7。如果b大于上述数值时,则必须进行稳定性计算,并限制弹簧载荷F小于失稳时的临界载荷Fcr。一般取F=Fcr/(2~2.5),其中临界载荷可按下式计算: Fcr=CBkH0式中,CB为不稳定系数,由下图查取。如果F>Fcr,应重新选择有关参数,改变b值,提高Fcr的大小,使其大于Fma
7、x之值,以保证弹簧的稳定性。若受结构限制而不能改变参数时,就应该加装图b)、c)所示的导杆或导套,以免弹簧受载时产生侧向弯曲。
此文档下载收益归作者所有