高考数学复习资料(精)

高考数学复习资料(精)

ID:44729240

大小:4.02 MB

页数:72页

时间:2019-10-26

高考数学复习资料(精)_第1页
高考数学复习资料(精)_第2页
高考数学复习资料(精)_第3页
高考数学复习资料(精)_第4页
高考数学复习资料(精)_第5页
资源描述:

《高考数学复习资料(精)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、72目录第一章高中数学解题基本方法………………………2一、配方法………………………………………2二、换元法………………………………………5三、待定系数法…………………………………12四、定义法………………………………………17五、数学归纳法…………………………………21六、参数法………………………………………25七、反证法………………………………………29八、消去法,分析与综合法,特殊与一般法,类比与归纳法,观察与实验法……第二章高中数学常用的数学思想……………………32一、数形结合思想………………………………

2、32二、分类讨论思想………………………………37三、函数与方程思想……………………………43四、转化(化归)思想…………………………49第三章高考热点问题和解题策略……………………55一、应用问题……………………………………55二、探索性问题…………………………………61三、选择题解答策略……………………………66四、填空题解答策略……………………………7172第一章高中数学解题基本方法一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,

3、需要我们适当预测,并且合理运用“裂项”与“添项”,“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程,二次不等式,二次函数,二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。配方法使用的最基本的配方依据是二项完全平方公式(a+b)=a+2ab+b,将这个公式灵活运用,可得到各种基本配方形式,如:a+b=(a+b)-2ab=(a-b)+2ab;a+ab+b=(a+b)-ab=(a-b)+3ab=(

4、a+)+(b);a+b+c+ab+bc+ca=[(a+b)+(b+c)+(c+a)]a+b+c=(a+b+c)-2(ab+bc+ca)=(a+b-c)-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sinαcosα=(sinα+cosα);x+=(x+)-2=(x-)+2;……等等。Ⅰ,再现性题组:1.在正项等比数列{a}中,asa+2asa+aa=25,则a+a=_______。2.方程x+y-4kx-2y+5k=0表示圆的充要条件是_____。A.

5、<1B.k<或k>1C.k∈RD.k=或k=13.已知sinα+cosα=1,则sinα+cosα的值为______。A.1B.-1C.1或-1D.04.函数y=log(-2x+5x+3)的单调递增区间是_____。A.(-∞,]B.[,+∞)C.(-,]D.[,3)5.已知方程x+(a-2)x+a-1=0的两根x,x,则点P(x,x)在圆x+y=4上,则实数a=_____。【简解)1小题:利用等比数列性质aa=a,将已知等式左边后配方(a+a)易求。答案是:5。2小题:配方成圆的标准方程形式(x-a)+(y-

6、b)=r,解r>0即可,选B。3小题:已知等式经配方成(sinα+cosα)-2sinαcosα=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。5小题:答案3-。Ⅱ,示范性题组:72例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。A.2B.C.5D.6【分析)先转换为数学表达式:设长方体长宽高分别为x,y,z,则,而欲求对角线长,将其配凑成两已知式的组合形式可得。

7、【解)设长方体长宽高分别为x,y,z,由已知“长方体的全面积为11,其12条棱的长度之和为24”而得:。长方体所求对角线长为:===5所以选B。【注)本题解答关键是在于将两个已知和一个未知转换为三个数学表示式,观察和分析三个数学式,容易发现使用配方法将三个数学式进行联系,即联系了已知和未知,从而求解。这也是我们使用配方法的一种解题模式。例2.设方程x+kx+2=0的两实根为p,q,若()+()≤7成立,求实数k的取值范围。【解)方程x+kx+2=0的两实根为p,q,由韦达定理得:p+q=-k,pq=2,()+(

8、)====≤7,解得k≤-或k≥。又∵p,q为方程x+kx+2=0的两实根,∴△=k-8≥0即k≥2或k≤-2综合起来,k的取值范围是:-≤k≤-或者≤k≤。【注)关于实系数一元二次方程问题,总是先考虑根的判别式“Δ”;已知方程有两根时,可以恰当运用韦达定理。本题由韦达定理得到p+q,pq后,观察已知不等式,从其结构特征联想到先通分后配方,表示成p+q与pq的组合式。假如本题不对“△”

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。