欢迎来到天天文库
浏览记录
ID:44714150
大小:20.14 KB
页数:12页
时间:2019-10-25
《小学数学常见数学思想方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、小学数学常见数学思想方法一、小学数学思想方法的重要性《数学课程标准》(修订稿)在“基本理念”、“总体目标”以及“实施建议”中都涉及有关数学思想方法的内容,对数学思想方法的教学提出了新的要求。总体目标的第一条就明确提出:“让学生获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。”如在“基本理念”中指出:“……帮助学生在自主探索与合作交流的过程中,真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。”这里,实际上是在原有“双基”的基础上提出了“四基”,即基础知识、基本技能、基本思想和基本活动经验。其中
2、,数学思想方法首次被明确地列入学生的培养目标中。知识和技能是数学学习的基础(双基),而数学的思想方法则是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。数学思想方法是蕴含在数学知识形成、发展和应用的过程中,学生只有积极参与教学过程及独立思考,才能逐步感悟数学思想方法。学生学习数学的最终目的,是要运用所学到的数学知识去解决一些实际问题,要解决问题就要有一定的方式、方法、途径和手段,这就是策略。这种策略无不受到数学思想的影响和支配。而学生一旦掌握了解决问题的方式方法,又可以促进数学思想的进一步形成和完
3、善。可见,两者是既有联系又有区别的辩证统一体,数学思想指导着数学方法,数学方法是数学思想的具体表现,二者是相互依存、相互促进的。可以说,数学思想和方法是数学的灵魂,是创造能力的源泉;良好的数学思想和方法,可使学生终生受益。“数学思想方法大众化,并使其在数学课程设计中充分体现,将是设计21世纪数学课程的突破口”。那么,在小学数学教学中,到底要渗透哪些数学思想和方法呢?二、什么是小学数学思想方法所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。所谓的数学方法,就是解决
4、数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。数学思想是内隐的,而数学方法是外显的,数学思想比数学方法更深刻,更抽象地反映了数学对象间的内在联系。一般来说,前者给出了解决问题的方向,后者给出了解决问题的策略。但由于小学数学内容比较简单,知识最为基础,所以隐藏的思想和方法很难截然分开,更多的反映在联系方面,其本质往往是一致的。如常用的分类思想和分类方法,集合思想和交集方法,在本质上都是相通的,所以小学数学通常把数学思想和方法看成一个整体概念,即小学数学思想方法。小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许
5、多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教学中,仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使教师讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育的目标。因此,我们要转变观念,把数学思想方法作为具体的目标进行教学。数学思想方法是蕴含在数学知识形成、发展和应用的过程中,学生只有积极参与教学过程及独立思考,才能逐步感悟数学思
6、想方法。三、小学数学思想方法有哪些1、对应思想方法 对应是人们对两个集合元素之间的联系的一种思想方法。小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线(数轴)上的点与表示具体大小的数的一一对应,又如分数应用题中一个具体数量与一个抽象分数(分率)的对应等。对应思想也是解答一般应用题的常见方法。 小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。如一年级上册教材中,分别将小兔和小鹿、小猴和小熊、小兔和小鸟一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。2、转化思想方法:
7、 这是解决数学问题的重要策略。是由一种形式变换成另一种形式的思想方法。而其本身的大小是不变的。如几何形体的等积变换、解方程的同解变换、公式的变形等。在计算中也常常用到转化,如甲÷乙(零除外)=甲×乙的倒数,又如除数是小数的除法可以转化成除数是整数的除法来计算。在解应用题时,常常对条件或问题进行转化。通过转化达到化难为易、化新为旧、化繁为简、化整为零、化曲为直等。 3、符号化思想方法符号化思想方法用符号化的语
此文档下载收益归作者所有