《点燃思维的火花》论文

《点燃思维的火花》论文

ID:44586245

大小:40.47 KB

页数:3页

时间:2019-10-23

《点燃思维的火花》论文_第1页
《点燃思维的火花》论文_第2页
《点燃思维的火花》论文_第3页
资源描述:

《《点燃思维的火花》论文》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、点燃思维的火花——开放型习题设计的几点思考吉安市北门小学陈林清练习是数学教学重要的组成部分,恰到好处的习题,不仅能巩固知识,形成技能,而且能启发思维,激发想象力和好奇心,提高学习兴趣,把无味学习变有味学习,通过几年来的教学,我感悟到开放型习题的设计不妨从以下几个方面去思考:思考一:运用多向型开放题,培养学生思维的广阔性多向型开放题,对同一个问题可以有多种思考方向,使学生产生纵横联想,启发学生一题多解、一题多变、一题多思,训练学生的发散思维,培养学生思维的广阔性和灵活性。如:甲乙两队合修一条长1500米的公路,20天完成,完

2、工时甲队比乙队多修100米,乙队每天修35米,甲队每天修多少米?这道题从不同的角度思考,得出了不同的解法:1、先求出乙队20天修的,根据全长和乙队20天修的可以求出甲队20天修的,然后求甲队每天修的。算式是(1500-35x20)-202、先求出乙队20天修的,根据乙队20天修的和甲队比乙队多修100米可以求出甲队20天修的,然后求甲队每天修的。算式是:(35x20+100)-203、可以先求出两队平均每天共修多少米,再求甲队每天修多少米。算式是:1500-20-354、可以先求出甲队每天比乙队多修多少米,再求甲队每天修多

3、少米。算式是:100-20+355、假设乙队和甲队修的同样多,那么两队20天共修(1500+100)米,然后求两队每天修的,再求甲队每天修的。算式是:(1500+100)-20-26、假设乙队和甲队修的同样多,那么两队20天共修(1500+100)米,然后求甲队20天修的,再求甲队每天修的。算式是:(1500+100)-2^207、假设乙队和甲队修的同样多,那么两队20天共修(1500+100)米,也就是甲队(20x2)天修的,由此可以求出甲队每天修的。算式是:(1500+100)三(20x2)然后引导学生比较哪种方法最简

4、便,哪种思路最简捷。这类题,可以给学生最大的思维空间,使学生从不同的角度分析问题,探究数量间的相互关系,并能从不同的解法中找出最简捷的方法,提高学生初步的逻辑思维能力,从而培养学生思维的广阔性和灵活性。思考二:运用不定型开放题,培养学生思维的深刻性不定型开放题,所给条件包含着答案不唯一的因素,在解题的过程中,必须利用已有的知识,结合有关条件,从不同的角度对问题作全面分析,正确判断,得出结论,从而培养学生思维的深刻性。女口:学习分数时,学生对“分率”和“用分数表示的具体数量”往往混淆不清,以致解题时在该知识点上出现错误,教师

5、虽反复指出它们的区别,却难以收到理想的效果。在学习分数应用题后,让学生做这样一道习题:“有两根同样长的绳子,第一根截去9/10,第二根截去9/10米,哪一根绳子剩下的部分长?”此题出示后,有的学生说:“一样长。”有的学生说:“不一定。”我让学生讨论哪种说法对,为什么?学生纷纷发表意见,经过讨论,统一认识:“因为两根绳子的长度没有确定,第一根截去的长度就无法确定,所以哪一根绳子剩下的部分长也就无法确定,必须知道绳子原来的长度,才能确定哪根绳子剩下的部分长。”这时再让学生讨论:两根绳子剩下部分的长度有几种情况?经过充分的讨论,

6、最后得出如下结论:①当绳子的长度是1米时,第一根的9/10等于9/10米,所以两根绳子剩下的部分一样长;②当绳子的长度大于1米时,第一根绳子的9/10大于9/10米,所以第二根绳子剩下的长;③当绳子的长度小于1米时,第一根绳子的9/10小于9/10米,由于绳子的长度小于9/10米时,就无法从第二根绳子上截去9/10米,所以当绳子的长度小于1米而大于9/10米时,第一根绳子剩下的部分长。这样的练习,加深了学生对“分率”和“用分数表示的具体数量”的区别的认识,巩固了分数应用题的解题方法,培养了学生思维的深刻性,提高了全面分析、

7、解决问题的能力。思考三:运用多余型开放题,培养学生思维品质的批判性多余型开放题,将题目中的有用条件和无用条件混在一起,产生干扰因素,这就需要在解题时,认真分析条件与问题的关系,充分利用有用条件,舍弃无用条件,学会排除干扰因素,提高学生的鉴别能力,从而培养学生思维的批判性。如:一根绳子长25米,第一次用去8米,第二次用去12米,这根绳子比原来短了多少米?由于受封闭式解题习惯的影响,学生往往会产生一种凡是题中出现的条件都要用上的思维定势,不对题目进行认真分析,错误地列式为:25-8-12或25-(8+12)。做题时引导学生画图

8、分析,使学生明白:要求这根绳子比原来短了多少米,实际上就是求两次一共用去多少米,这里25米是与解决问题无关的条件,正确的列式是:8+12。通过引导分析这类题,可以防止学生滥用题中的条件,有利于培养学生思维的批判性,提高学生明辨是非、去伪存真的鉴别能力。思考四:运用缺少型开放题,培养学生思维的灵活性缺少型

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。