固体物理复习资料完整

固体物理复习资料完整

ID:44464638

大小:237.15 KB

页数:11页

时间:2019-10-22

固体物理复习资料完整_第1页
固体物理复习资料完整_第2页
固体物理复习资料完整_第3页
固体物理复习资料完整_第4页
固体物理复习资料完整_第5页
资源描述:

《固体物理复习资料完整》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、第一章晶体结构1、原子排列具有周期性或长程有序性的固体称为晶体。2、晶格中最小的重复单元或品格中产生完全平移覆盖的最小单元为原胞。3、几种简单品格简单立方品格的原胞基矢及原胞的体积一ak-a=~V+J一aa〕2C+l)a2aAA-i+j+k一af个a?—一k1简单立方晶格原胞的体积a3•面心立方晶格原胞的体积f/4,体心立方晶格原胞的体积a3/2o4、维格纳—塞茨原胞:由某一个格点为中心,做出其与最近格点和次近格点连线的中垂面,这些中垂面所包围的空间为维格纳一塞茨原胞。并会画出简单立方晶格的维格纳——塞茨原胞。5、实际品格=布拉伐格了(理解)+基

2、元(理解)。6、理解晶列、晶向,会确定晶向指数;答:晶列:布拉伐格子的格点可以看成分布在一系列相互平行的直线系上,这些直线系称为晶列。晶向:每一个晶列定义了一个方向,称为晶向。7、会确定晶面指数——密勒指数答:密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数。例如:1.9、画出立方晶格(111)面(100)面(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。8、按宏观对称的结构划分,晶体分属于7大晶系,共14种布拉伐格子。斤=2兀-吋5_="巴竺1ax•(a2x)0ra.xac弘xN

3、b2=5_二[=5一Lax•(aoxa.)Q9、倒格子原胞基矢的定义1'$3)恥2兀曾2异渔a{>(52xa3)Q其中,0为布拉伐榕子原胞的体积。由完全和同的一种原子构成的格子,格子屮只有一个原子,称为布拉伐格子。并且掌握倒格子原胞基矢与布拉伐格子原胞基矢满足:爲•汗2疋亠产I0iHj其中,=1,2,310、作业P578习题1.4习题1.5习题1.6习题1.8第二章固体的结合1、一般固体的结合可以概括为离子性结合、共价结合、金属性结合和范德瓦尔结合四种基木形式。2、原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子性结合、共价

4、结合、金属性结合和范徳瓦尔结合力的特点。离子性结合:正、负离子Z间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离了的闭合壳层的电了云的交叠产生强大的排斥力。当排斥力和吸引力相互平衡时,形成稳定的离子晶体;共价性结合:靠两个原子各贡献一个屯子,形成所谓的共价键;金属性结合:组成品体时,每个原子的最外层电子为所有原子共有,因此在结合成金属品体时,失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。在这种情况下,电子和原子实之间存在库仑作用,体积越小,电子云密度越高,库仑相互作用的库仑能愈低,表现为原子聚合起来的

5、作用。范德瓦耳斯结合:惰性元素最外层的电了为8个,具有球对称的稳定封闭结构。但在某一瞬时由于正、负电中心不重合而使原子呈现出瞬时偶极矩,这就会使其它原子产生感应极矩。非极性分子晶体就是依靠这瞬时偶极矩的作用而结合的。第三章晶格振动与晶体的热学性质1、作业P581习题3.62、在晶体屮存在不同频率的振动模式,称为一晶格振动_。晶格振动的能量量子称为—声子即晶格振动可以用_声子一來描述,一声子_可以被激发,也可以湮灭。3、由N个原子组成的一维单原子链,其振动模为_N个一支格波;4、由N个原子组成的一维双原子链,其振动模为_2N_支格波;5、晶体出N个原胞

6、构成,何:个原胞中有/个原子,则晶体共有_3LN—支格波。6、声子的角频率为CO则声子的能量和动量分别为如和翌7、什么是固体比热的德拜模型?简述其计算结果的意义。德拜提出以连续介质的弹性波来代表格波,将布拉伐晶格看作是各向同性的连续介质,有1个纵波和2个独立的横波。计算结果表明低温极限下:cv(t/&d)=12tt41512/r4Nk——与温度的3次方成正比。温度愈低,德拜近似愈好,说明在温度很低时,只有长波格波的激发是主耍的。1竺。d£00—1)212”"T"(3-144)实验结果表明:在低温下,金属的热容cv=yr+AT3了对热容量的贡献;®-记

7、住公式D~K(3-142)kbAT——晶格振动对热容量的贡献第四章能带理论1、理解布洛赫定理并会简单应用例如:一维周期势场屮电子的波函数满足布洛赫定理。如果晶格常数为电子的波函数为oo(I)V^k(^)=Sin—7T⑵i//k(x)=》(—汀"/(兀一曲)7?7=—OO8(4)屮心)=工I=—oo.3x(3)ICOS71a求:屯子在这些态中的波矢TT—解:根据布洛赫定理0(厂+Rn)=eikRni//(r)一维情形布洛赫定理屮(x+q)=elkai//(x)XX+QX1)电子的波函数i//k(x)=sin—7T必・(x+a)=sin7i=-sin—7

8、raaai//k(x+a)=-i//k(x)=elkai//k(x)严=—1电子的波矢k=-Cli//(x+

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。