欢迎来到天天文库
浏览记录
ID:44435697
大小:38.00 KB
页数:5页
时间:2019-10-22
《桥梁分析中的非线性单元》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、桥梁抗震非线性分析单元摘要:近些年来,国外修建了许多大跨度的桥梁。随着我国经济的不断发展,近些年來也修建了许多跨径超过「米的桥梁,而我国又是一个地震多发的国家,桥梁抗震性能对大跨桥梁尤其重要。桥梁抗震问题已经成为桥梁设计者所必须解决的问题。在强震作用下混凝土梁柱构件易进入塑性阶段而发生弹塑性损伤,丄E确地模拟结构进入非线性状态后的力学行为对评价结构的抗震安全性具有垂要的意义。解决结构的非线性反应分析问题首先要解决构件的非线性分析模型问题,木文主要阐述了在桥梁高墩进行抗震非线性反应分析中所采用的非线性单元,以及发展趋势。关键词:弹塑性;地震反应;塑性狡;高墩;弹塑性梁柱单元;弹塑性纤
2、维梁柱单元;抗震分析;集中塑性模型;纤维模型0引言随着我国经济的发展,对建筑结构的抗震性能评估有了更高的要求。近年來,随着交通建设的发展,我国西部地区规划并建成了大量的公路及铁路线路。由于西部地区多为山岭重丘区,地形、地貌和地质条件复杂,山区桥梁结构通常采用多联连续梁或连续刚构,下部一般为高墩,且墩高相羞悬殊,属于典型的非规则桥梁。高墩桥梁结构复朵,多采用薄壁空心墩,长细比较人,与中、低墩明显不同。西部地区的初步调杏表明:在已建成及正在设计规划中的高等级公路中,墩高超过40m的高墩桥梁占桥梁总数的40%以上,例如黄延高速公路的洛河特大桥最高墩高达143m,而我国《公路•工程抗震设计
3、规范(JTJ004・89)》仅适用于墩高不大于30m的墩柱。近些年來,国内外学者对高耸结构的地震需求及位移延性能力进行了一些有益的探讨,李睿等采用弹性时程分析方法讨论了高阶振型对桥梁高墩地震响应的影响,指出随着墩高的增加,高阶振型对其地震响应的影响逐步增强[1];阎志刚在桥梁高墩的研究屮指出高阶振型对高耸结构地震需求影响较大,在地震作用下可能形成两个或两个以上塑性饺[2];JohnL.Wilson等采用弹塑性梁柱单元建立计算模型模拟245m钢筋混凝土高烟囱,证明高阶振型在高烟囱的地震反应中起主导地位,指出在地震作用下高烟囱将形成多个塑性饺,对桥梁高墩地震需求分析具有一定的借鉴意义;
4、李建中,宋晓东等对桥梁高墩位移延性能力的研究也证明了墩身质量及高阶振型对高墩位移延性能力有较人贡献[3];夏修身,陈兴冲,王常峰受高阶振型的影响,墩中塑性较区对曲率延性的需求可能会比对墩底塑性较区对延性需求大很多[4]。上述学者的研究虽然定性地指出高阶振型对桥梁高墩的地震响应可能有显著影响,但现阶段对高墩的设计研究仍借用屮、低墩抗震设计理论,主要是塑性餃理论,进行墩柱的需求和能力分析。这种理论是与墩柱的拟静力试验条件相对应的,在墩柱能力计算时假设除墩底形成塑性较外,结构均为弹性,结构塑性转动变形仅发生在墩底等效长度的塑性区域Lp内,该假设仅适用于可简化为单口出度体系或变形以一阶振型
5、为主的结构体系,无法考虑桥墩高阶振型的贞献。对于高墩,由于其周期长、墩身质量大,忽略高阶振型的贡献可能导致较大误斧,难以保证结构的抗震安全性,因此有必要对桥梁高墩的地震需求作进一步的研究。近些年來高速铁路的发展,在地震多发的西南、西北地区高铁的兴建中,高墩将不可避免的会越来越多。常规结构线弹性分析方法己经很难满足结构抗震分析的要求。因此如何正确的对结构进行非线性分析,准确的预测结构在罕遇地震作用下的非线性反应,成为结构抗震性能设计中的重点问题。结构非线性分析模型可分为微观模型和宏观模型两种,微观模型计算量大、试验分析校正怵I难等问题,所以很难用于模拟大型整休结构。与微观模型和对应的
6、是宏观模型,宏观单元具有自由度少、计算量小等优点。通过面向对象语言编制了基于宏观单元的结构弹塑性分析软件平台MESAP,增加了三种非线性梁柱单元:基于刚度法纤维单元、基于柔度法纤维单元及基于柔度法的塑性较单元。1基于柔度法的塑性较单元理论1.1基于刚度法的梁柱单元基于刚度法的梁柱单元提出较早,Mari与Scordelis提出了基于刚度的梁柱单元模型,单元的刚体位移规定如图1所示。0,G12,如r-CC)>>XJ03,?3图1刚体位移向最规定该模型把单元划分为若干个积分区段,积分点处截面的位移通过3次Hermit多项式插值得到,对插值函数进行求导可以得到截面处对应的截面变形。基于刚度
7、法的单元主要缺点是3次的Hermit插值函数不能很好地描述端部屈服后单元的曲率分布,而且单元层次没有迭代计算因此收敛速度慢。为减少Hermit函数造成的误斧,采用多细分单元的方法进行建模,可以得到较好的效杲。1.2基于柔度法的梁柱单元基于柔度法的梁柱单元是出Filippou提出了基于柔度的梁柱单元模型,这一模型同样把单元划分为若干个积分区段,积分点处的截面力通过线性插值得到。塑性较模型是常用的宏观模型之一,其优点是将复杂的构件弹蛆性行•为采用为简单的截面力■位移关系曲
此文档下载收益归作者所有