欢迎来到天天文库
浏览记录
ID:44413916
大小:787.25 KB
页数:23页
时间:2019-10-21
《四川省成都七中2019届高三数学下学期入学考试试题(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、四川省成都七中2019届高三数学下学期入学考试试题(含解析)一、选择题(本大题共12小题,共60.0分)1.已知是虚数单位,若,则的共轭复数对应的点在复平面的( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简,求出z的坐标得答案.【详解】解:由2+i=z(1﹣i),得z,∴,则z的共轭复数z对应的点的坐标为(),在复平面的第四象限.故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.设集合,,则(
2、 )A.B.C.D.【答案】C【解析】【分析】分别求y=3x,x∈R,y,x∈R的值域,得:A=(0,+∞),B=[0,2],再求交集即可.【详解】解:由y=3x,x∈R,得y>0,即A=(0,+∞),由y,x∈R,得:0≤y≤2,即B=[0,2],即A∩B=(0,2],故选:C.【点睛】本题考查了求函数值域及交集的运算,考查指数函数与幂函数的图象与性质,属简单题.3.函数的大致图象是( )A.B.C.D.【答案】A【解析】【分析】根据函数的奇偶性及取特殊值,进行排除即可得答案.【详解】由题意得,函数,则函数为偶函
3、数,图象关于y轴对称,故排除C、D,又由当时,,故排除B,故选:A.【点睛】本题主要考查了函数图象的识别,其中解答中熟练应用函数的奇偶性,以及特殊点的函数值进行排除求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.执行如图所示的程序框图,则输出的值为( )A.7B.9C.11D.13【答案】C【解析】第一次:,第二次:,第三次:,第四次:,第五次:,此时不满足条件,所以输出k=115.已知等边内接于,为线段的中点,则=( )A.B.C.D.【答案】A【解析】【分析】根据题意画出图形,结合图形,利
4、用平面向量的线性运算写出用、的表达式即可.【详解】解:如图所示,设BC中点为E,则()•.故选:A.【点睛】本题考查了平面向量的线性表示与应用问题,是基础题.6.某几何体的三视图如图所示,图中正方形的边长为2,四条用虚线表示的线段长度均相等,则该几何体的体积为( )A.B.C.D.【答案】A【解析】【分析】直接利用三视图,还原出原几何体,进一步利用几何体的体积公式求出结果.【详解】根据几何体的三视图:该几何体是由一个边长为2正方体挖去一个底面半径为1,高为2的圆锥构成的不规则的几何体.所以:v,.故选:A.【点睛】本
5、题考查的知识要点:三视图的应用,几何体的体积公式的应用,主要考查学生的运算能力和空间想象能力,属于基础题型.7.二项式的展开式中的系数是,则( )A.1B.C.D.【答案】B【解析】【分析】求得二项展开式中的通项公式,令,解得,代入即可求解,得到答案.【详解】由题意,二项式的展开式中的通项公式,令,解得,所以含项的系数为,解得故选:B.【点睛】本题主要考查了二项式定理的应用,其中解答中熟练求解二项展开式的通项,准确得出的值是解答的关键,着重考查了运算与求解能力,属于基础题.8.如图所示,边长为的正六边形内有六个半径相
6、同的小圆,这六个小圆分别与正六边形的一边相切于该边的中点,且相邻的两个小圆互相外切,则在正六边形内任取一点,该点恰好取自阴影部分的概率为( )A.B.C.D.【答案】C【解析】【分析】分别求出正六边形和阴影部分的面积,作商即可.【详解】如图所示,边长为a的正六边形,则OA=OB=AB=a,设小圆的圆心为O',则O'C⊥OA,∴OCa,∴O'Ca,OO'a,∴ODa,∴S阴影=12[a•aπ•(a)2]=()a2,S正六边形a2,∴点恰好取自阴影部分的概率P,故选:C.【点睛】本题考查了几何概型问题,考查特殊图形面积的
7、求法,是一道常规题.9.如图所示,点为双曲线的右顶点,为双曲线上一点,作轴,垂足为,若为线段的中点,且以为圆心,为半径的圆与双曲线恰有三个公共点,则的离心率为( )A.B.C.2D.【答案】A【解析】【分析】设A的坐标(a,0),求得B的坐标,考虑x=2a,代入双曲线的方程可得P的坐标,再由圆A经过双曲线的左顶点,结合两点的距离公式可得a=b,进而得到双曲线的离心率.【详解】由题意可得A(a,0),A为线段OB的中点,可得B(2a,0),令x=2a,代入双曲线的方程可得y=±b,可设P(2a,b),由题意结合图形可得
8、圆A经过双曲线的左顶点(﹣a,0),即
9、AP
10、=2a,即有2a,可得a=b,e,故选:A.【点睛】本题考查双曲线的方程和性质,主要是离心率的求法,考查方程思想和运算能力,属于中档题.10.已知,则( )A.B.C.D.【答案】B【解析】【分析】利用三角恒等变换的公式,化简求得,得到,再利用两角和的正切函数的公式,即可求解.【详解
此文档下载收益归作者所有