如何追求女生理论综述

如何追求女生理论综述

ID:44356713

大小:36.50 KB

页数:3页

时间:2019-10-21

如何追求女生理论综述_第1页
如何追求女生理论综述_第2页
如何追求女生理论综述_第3页
资源描述:

《如何追求女生理论综述》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、如何追求女生理论综述摘要:女e,其最优控制求解相当困难,寻求近似的最优控求解方法是当下解决这一问题的主要途径。冃前,比较成熟的最优控制求解方法主要冇七类,本文对这七种方法进行了详细的阐述,并对其优缺点进行了客观的对比。论文关键词:非线性,最优控制「近年來,最优控制理论[1,2]的研究,无论在深度和广度上,都有了很人的发展,C成为系统与控制领域最热门的研究课题之一,取得了许多研究成來。同吋,也在与其他控制理论相互渗透,出现了许多新的最优控制方式,形成了更为实用的学科分支。例如鲁棒最优控制[3]、随机最优控制[4]、分布参数系统的最优控制[5]、人系统的次优控制[6]、离散系统的

2、最优控制及最优滑模变结构控制[7,8]等。而対于非线性系统,其最优控制求解相当困难,需耍求解非线性HJB方程或非线性两点边值问题,除简单情况外[9],这两个问题都无法得到解析解。因此,许多学者都致力于寻求近似的求解方法[10-13],通过近似解得到近似的最优控,即次优控制。「1、非线性最优控制理论研究成果分类「目前,较为流行的近似最优控制求解方法主要有以下儿类[6][13]o「1)幕级数展开法:幕级数展开方法通过一个幕级数來构造控制律,得到序列形式的近似最优解,或者将系统中的非线性项以幕级数形式分解,或者通过引进一个临吋变量并围绕它展开。花)==丘严(w)MX「将上式代入HJ

3、B方程求得级数近似解,也可利用Adomian分解将非线性项进行分解,由此寻求非线性HJB方程级数的近似解。「2)Galerkin逐次逼近方法:由动态规划得到的一般性偏微分HJB方程,引入一个迭代过程来求解一般非线性HJB方程的一个近似解序列。1严(工)=——R^BrQOJt=0上2…I2&「3)广义正交多项式级数展开法:其主耍思想是将最优控制问题中的状态变量,控制输入,性能指标和各个参数分别川广义正交多项式展开,利用广义正交多项式的积分、乘积运算阵7U"将描述系统的微分方程转化为一系列的代数方程用=妊U+N。然示,得到,T非奇异时由U=厂'了得到的控制律是一个多项式级数解该方

4、法将最优控制问题转化为代数极值问题,从而避免了求解吋变非线性Riccati方程。「4)有限差分和有限元方法:经典的有限差分和有限元方法可以用來近似求解非线性HJB方程。近年来,这类方法用来近似求取非线性HJB方程的粘性解。「5)状态相关Riccati方程方法:这种方法适用的模型是仿射非线性系统,通过极大值原理假设最优控制律具有如下形式a#(r)=矿(则仗就「其中恥)为下式所述里卡提方程的解一玫宴)=+一巩才)0(或/1"矿(x〉+0「这样,问题的关键归结于近似求解巩©。状态相关里卡提方程方法通过在巩©中引入灵敏度参数变量E,在邻域内将尺工)展为幕级数巩”间=吃)

5、“+比⑴宀2

6、

7、亠+■■■「H「通过比较抵级数同次项系数将状态相关里卡提方程分解为一组矩阵微分方程序列,山此求得其近似解。状态相关里卡提方程方法所设计的近似最优控制律是一种级数形式的状态反馈控制律。「6)Riccati方程近似序列法:该方法对非线性系统构造线性时变序列以及相应的线性二次型时变性能指标,得到线性时变序列的最优反馈控制序列/=一(严记;心0「其中W1)理"是里卡提方程近似序列的解。「此方法计算量较大,但是当系统的维数不是很大吋,较里卡提方程近似序列方法具有很快的收敛速度,并表现出很好的鲁棒性。「7)逐次逼近法:该方法是针对非线性的一•次项和高次项可分离的一类非线性系统进行近似最

8、优控制问题的求解,给出了一种逐次逼近的近似求解方法。该方法针对由极人值原理导致的两点边值问题,构造近似的等价序列将其转化为一组线性非齐次两点边值问题序列,通过迭代求解一系列的向最微分方程,包括状态向最方程序列和共态向最方程序列,得到原非线性系统近似最优控制问题的解。该方法被广泛应用到各类非线性系统,英最大优点是在迭代过程中每次计算的不是矩阵微分或代数方程,而是向量微分或代数方程,计算量大人减少,而且实时性很高。「2、非线性最优控制理论研究成果对比「比较以上方法,各有优缺点。其中,幕级数展开方法要求系统关于状态向量x解析,才能够进行展开,这在实际工程应川中是不现实的。Galer

9、kin逐次逼近法的收敛性过于依赖系统的初值,收敛性在很多情况卜-是无法保证的。广义正交多项式级数展开法和有限差分、有限元方法都是采用不同的数学匸具來解决近似求解非线性系统的最优控制问题,但这两种方法的计算收敛性不好,所盂的巨大计算昼也使得它们离工程实际应用冇很大一段距离。状态相关里卡提方程适用于一类仿射非线性系统。里卡提方程近似序列方法同样适用于一类仿射非线性系统,当处理高维系统时,其计算量将很大。而逐次逼近法,从计算复杂度看,是对向量迭代,得到的最优控制律是由精确的线性反馈项和非线性补偿项纽成,将最优

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。