资源描述:
《集合练习提高题及其答案解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、+ 高分网高考频道小编整理了高一数学必修1知识点,希望为大家提供服务。 一.知识归纳: 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的
2、元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈A都有x∈B,则AB(或AB); 2)真子集:AB且存在x0∈B但x0A;记为AB(或,且) 3)交集:A∩B={x
3、x∈A且x∈B} 4)并集:A∪B={x
4、x∈A或x∈B} 5)补集:CUA={x
5、xA但x∈U}+ 注意:①?A,若A≠?,则?A; ②若,,则; ③若且,则A=B(等
6、集) 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。 4.有关子集的几个等价关系 ①A∩B=AAB;②A∪B=BAB;③ABCuACuB; ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。 5.交、并集运算的性质 ①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A; ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB; 6.有限子集的个数:设集合A的元素个数是n,则A有2n
7、个子集,2n-1个非空子集,2n-2个非空真子集。 二.例题讲解: 【例1】已知集合M={x
8、x=m+,m∈Z},N={x
9、x=,n∈Z},P={x
10、x=,p∈Z},则M,N,P满足关系 A)M=NPB)MN=PC)MNPD)NPM 分析一:从判断元素的共性与区别入手。 解答一:对于集合M:{x
11、x=,m∈Z};对于集合N:{x
12、x=,n∈Z} 对于集合P:{x
13、x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。+ 分析二:简单列举集合中
14、的元素。 解答二:M={…,,…},N={…,,,,…},P={…,,,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。 =∈N,∈N,∴MN,又=M,∴MN, =P,∴NP又∈N,∴PN,故P=N,所以选B。 点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。 变式:设集合,,则(B) A.M=NB.MNC.NMD. 解: 当时,2k+1是奇数,k+2是整数,选B 【例2】定义集合A*B={x
15、x∈A且xB},若A={1,3,5,7},B=
16、{2,3,5},则A*B的子集个数为 A)1B)2C)3D)4 分析:确定集合A*B子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。 解答:∵A*B={x
17、x∈A且xB},∴A*B={1,7},有两个元素,故A*B的子集共有22个。选D。 变式1:已知非空集合M{1,2,3,4,5},且若a∈M,则6?a∈M,那么集合M的个数为 A)5个B)6个C)7个D)8个 变式2:已知{a,b}A{a,b,c,d,e},求集合A.+ 解:由已知,集合中必须含有元素
18、a,b. 集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}. 评析本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有个. 【例3】已知集合A={x
19、x2+px+q=0},B={x
20、x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。 解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3. ∴B={x
21、x2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈
22、A ∵A∩B={1}∴1∈A∴方程x2+px+q=0的两根为-2和1, ∴∴ 变式:已知集合A={x
23、x2+bx+c=0},B={x
24、x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值. 解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5 ∴B={x
25、x2-5x