欢迎来到天天文库
浏览记录
ID:4409720
大小:236.50 KB
页数:23页
时间:2017-12-01
《智能充电器设计_毕业设计》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、智能充电器设计目录第一章绪论11.1引言11.2蓄电池充电理论11.3蓄电池种类31.4设计要求4第二章系统设计思路分析62.1智能化的实现62.2充电方式分析62.3芯片选用及介绍8第三章系统硬件设计123.1主要器件123.2原理图及说明14第四章系统软件设计164.1程序流程图164.2程序设计及说明17结论与体会20主要参考材料:21附录1:系统原理图22I第一章绪论1.1引言中国是全球蓄电池的产销大国,蓄电池已有200多年的历史,是一种应用广泛的动力电源。具有原材料易得、价格低廉、可靠性好等优点,目前约有95%的市场占有
2、率。蓄电池作为稳定电源和主要的直流电源,需求广泛,用量巨大,与我们的社会生活息息相关。由于蓄电池维护简单、价格低廉、供电可靠、使用寿命长,广泛作为汽车、飞机、轮船等机动车辆或发电机组的启动电源。随着经济的发展,大容量蓄电池的应用迅速增加,人们希望能快捷、安全的对蓄电池进行充电。因此,为了适应市场需求,我们需要设计一种对于蓄电池的只能充电器。首先,目前市面上的充电器有许多的不足和缺陷,由于充电器多采用大电流的快速充电法,在电池充满后如果不及时停止会使电池发烫,过度的充电会严重损害电池的寿命。而且,流行的铅酸密封蓄电池充电器大多采用三
3、段式充电方法,充电时间长,效率低,对电池保护差,容易发生过充电或者充电不足的现象。过充电,可使蓄电池发热,电解液失水;充电不足,可使蓄电池内化学反应不充分,并且长期充电不足会导致容量下降。以上两种情况都会降低蓄电池的使用寿命。由此可见,充电气性能的好坏都会直接影响到蓄电池的使用效果和使用寿命。1.2蓄电池充电理论上世纪60年代中期,美国科学家马斯开口对蓄电池的充电过程做了大量的试验研究,并提出了以最低出气率为前提的蓄电池可接受充电曲线,如图所示。实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也
4、没有影响。原则上把这条曲线成为最佳充电曲线,如图1.1所示,从而奠定了智能充电方法的研究方向。22ti图1.1最佳充电曲线由图1.1可以看出:初始充电电流很大,但衰减很快。主要原因是充电过程中产生了极化现象,在密封式蓄电池充电过程中,内部产生氧气和氢气,当氧气不能被及时吸收时,便堆积在正极板(正极板产生氧气),是电池内部压力增大,电池温度上升,同时缩小了正极板的面积,表现为内阻上升,出现了所谓的极化现象。蓄电池是可逆的,其放电及充电的化学反应式如下Pb+PbO2+2H2SO4=2PbSO4+2H2O很显然,充电过程和放电过程互为逆
5、反应。可逆过程就是热力学的平衡过程,为保障电池能够始终维持在平衡状态之下充电,必须尽量使通过电池的电流小一些。理想条件是外加电压等于电池本身的电动势。但是实践表明,蓄电池充电时,外加电压必须增大到一定数值才行,这个数值又因为电极材料、溶液浓度等各种因素的差别而在不同程度上超过了蓄电池的平衡电动势值。在化学反应中,这种电动势超过热力学平衡值的现象就是极化现象。一般来说,产生极化现象有3个方面的原因。1)欧姆极化:充电过程中,正负离子向两极迁移,在离子迁移过程中不可避免的受到一定的阻力,成为欧姆内阻。为了克服这个内阻,外加电压必须额外
6、施加一定的电压,以克服阻力推动离子迁移。该电压以热的方式转化给环境,出现所谓的欧姆极化。随着充电电流急剧加大,欧姆极化将造成蓄电池在充电过程中的高温。2)浓度极化:22电流流过蓄电池时为维持正常的反应,最亮想的情况是电极表面反应物及时得到补充,生成物能及时离去。实际上,生成物和反应物的扩散速度远远比不上化学反应速度,从而造成极板附近电解质溶液浓度发生变化。也就是说,从电极表面到中部溶液电解液浓度分布不均匀,这种现象称为浓度极化。3)电化学极化:这种极化是由于电极上进行的电化学反应的速度,落后于电极上电子运动的速度造成的。例如:电池
7、的负极放电前,电极表面带有负电荷,其附近溶液带有正电荷,两者处于平衡状态。放电时,立即有电子释放给外电路。电极表面负电荷减少,而金属溶解的氧化反应进行缓慢Me-eMe+,不能及时补充电极表面电子的减少,电极表面带电状态发生变化。这种表面负电荷减少的状态促进金属中电子离开电极,金属表面M+转入溶液,加速Me-eMe+反应进行。总有一个时刻,达到新的动态平衡。但与放电前相比,电极表面所带负电荷数目减少了,于此对应的电极电势变正。也就是电化学极化电压变高,从而严重阻碍了正常的充电电流。同理,电池正极放电时,电极表面所带正电荷数目减少,电
8、极电势变负。这3种极化现象都是随着充电电流的增大而严重。1.3蓄电池种类目前常用的四种化学电池是铅酸电池(PbSO4)、锂离子电池(Li+)、镍铬电池(NiCd)和镍氢电池(NiMH)。由于环保问题和对电池的要求越来越高等综合因素,推动了新电池技术
此文档下载收益归作者所有