欢迎来到天天文库
浏览记录
ID:43808521
大小:3.42 MB
页数:13页
时间:2019-10-14
《几何原本简介》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、ArkeyWorks名著导读—《几何原本》吕林声ArkeyWorks作者简介欧几里得(约公元前330年—前275年)古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-前283年)时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。除《几何原本》外还有不少著作,如《已知数》,《纠错集》,《圆锥曲线论》,《曲面轨迹》,《观测天文学》等,遗憾的是除《几何原本》外这些都没有留存下来消失在时空的黑暗之中了。ArkeyWorks目录第一卷几何基础第二卷几何与代数第三卷圆
2、与角第四卷圆与正多边形第五卷比例第六卷相似第七卷数论(一)第八卷数论(二)第九卷数论(三)第十卷无理量第十一卷立体几何第十二卷立体的测量第十三卷建正多面体ArkeyWorks各卷简介第一卷:几何基础。重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是毕达哥拉斯定理的正逆定理;第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。第四卷:讨论圆内接和外切多边形的做法和性质;第五卷:讨论比例理论,
3、多数是继承自欧多克斯的比例理论,被认为是"最重要的数学杰作之一"第六卷:讲相似多边形理论,并以此阐述了比例的性质。第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十卷是篇幅最大的一卷,主要讨论无理量(与给定的量不可通约的量),其中第一命题是极限思想的雏形。第十一卷、十二、十三卷:最后讲述立体几何的内容.从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧氏几何。Arkey
4、Works书籍简介古希腊大数学家欧几里德是与他的巨著——《几何原本》一起名垂千古的。这本书是世界上最著名、最完整而且流传最广的数学著作,也是欧几里德最有价值的一部著作。在《原本》里,欧几里德系统地总结了古代劳动人民和学者们在实践和思考中获得的几何知识,欧几里德把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。而这本书,也就成了欧式几何的奠基之作。两千多年来,《几何原本》一直是学习几何的主要教材。哥白尼、伽利略、
5、笛卡尔、牛顿等许多伟大的学者都曾学习过《几何原本》,从中吸取了丰富的营养,从而作出了许多伟大的成就。《几何原本》是古希腊数学家欧几里得的一部不朽之作,集整个古希腊数学的成果和精神于一书。既是数学巨著,又是哲学巨著,并且第一次完成了人类对空间的认识。除《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比。在《几何原本》中,欧几里得首先给出了点、线、面、角、垂直、平行等定义,接着给出了关于几何和关于量的十条公理,如“凡直角都相等”、“整体大于部分”以及后来引起的许多纷争“平行线公理”等等。公理后面是一个一个的命题及其证明,内容丰富多
6、彩。公理化结构是近代数学的主要特征而《几何原本》则是公理化结构的最早典范。欧几里得创造性的总结了他以前的古希腊数学,将零散的,不连贯的数学知识整理起来加上自己的大量创造,构造出彼此内在联系的有机的宏大大厦。本书共分为13卷,有5条公设、五条公理、119个定义和465个命题,构成历史上的一个数学公理体系。作为基础的五条公理和公设五条公理1.等于同量的量彼此相等;2.等量加等量,其和相等;3.等量减等量,其差相等;4.彼此能重合的物体是全等的;5.整体大于部分。五条公设1.过两点能作且只能作一直线;2.线段(有限直线)可以无限地延长;3.以任一点为圆心,任意长
7、为半径,可作一圆;4.凡是直角都相等;5.同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交。最后一条公设就是著名的平行公设,或者叫做第五公设。它引发了几何史上最著名的长达两千多年的关于“平行线理论”的讨论,并最终诞生了非欧几何。值得注意的是,第五公设既不能说是正确也不能说是错误,它所概括的是一种情况。非欧几何则在推翻第五公设的前提下进行了另外情况的讨论。重要的命题命题Ⅰ.47在直角三角形中以斜边为边的正方形面积等于以两直角边为边的正方形面积之和(两直角边的平方和等于斜边的平方)《几何原本》
8、的意义和影响在几何学上的影响和意义在几何学发展的历史中,欧几里得的
此文档下载收益归作者所有