小学数学的思想方法

小学数学的思想方法

ID:43787025

大小:2.94 MB

页数:109页

时间:2019-10-14

小学数学的思想方法_第1页
小学数学的思想方法_第2页
小学数学的思想方法_第3页
小学数学的思想方法_第4页
小学数学的思想方法_第5页
资源描述:

《小学数学的思想方法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、小学数学的思想方法数学思想和数学方法既有区别又有密切联系。数学思想既有认识论方面的内容,如数学的理论和知识;又有方法论方面的内容,如处理各种问题的意识和策略。数学方法主要是方法论方面的内容,如表示、处理各种问题的手段和途径。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。因此,二者是有密切联系的。我们把二者合称为数学思想方法。数学思想是数学的灵魂。那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。2021/8/30课程标准修改稿一、总

2、体目标通过义务教育阶段的数学学习,学生能:获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。2021/8/30一、符号化思想1.符号化思想概念。数学符号是数学的语言,数学世界是一个符号化的世界,数学作为人们进行表示、计算、推理和解决问题的工具,符号起到了非常重要的作用;因为数学有了符号,才使得数学具有简明、抽象、清晰、准确等特点,同时也促进了数学的普及和发展;国际通用的数学符号的使用,使数学成为国际化的语言。符号化思想是一般化的思想方法,具有普遍的意义。2021/8/302.如何理解符号化思想。第一,能从具体

3、情境中抽象出数量关系和变化规律,并用符号表示。这是一个从具体到抽象、从特殊到一般的探索和归纳的过程。如在长方形上拼摆单位面积的小正方形,探索并归纳出长方形的面积公式,并用符号表示:S=ab。这是一个符号化的过程,同时也是一个模型化的过程。2021/8/30第二,理解符号所代表的数量关系和变化规律。这是一个从一般到特殊、从理论到实践的过程。包括用关系式、表格和图象等表示情境中数量间的关系。如假设一个正方形的边长是a,那么4a就表示该正方形的周长,a²表示该正方形的面积。这同样是一个符号化的过程,同时也是一个解释和应用模型的过程。第三,会进行符号间

4、的转换。数量间的关系一旦确定,便可以用数学符号表示出来,但数学符号不是唯一的,可以丰富多彩。如一辆汽车的行驶时速为定值80千米,那么该辆汽车行驶的路程和时间成正比,它们之间的数量关系既可以用表格的形式表示,也可以用公式s=80t表示,还可以用图象表示。即这些符号是可以相互转换的。2021/8/30第四,能选择适当的程序和方法解决用符号所表示的问题。这是指完成符号化后的下一步工作,就是进行数学的运算和推理。能够进行正确的运算和推理是非常重要的数学基本功,也是非常重要的数学能力。2021/8/303.符号化思想的具体应用。(1)数的表示、运算和关系

5、。数字0~9、+、-、×、÷、=、>、<是比较早期的数学符号,便于人们计数和计算。是小学数学应用最广泛的符号。(2)代数思想。代数在早期的主要特征是以文字为主的演算,到了16、17世纪数学家韦达、笛卡尔和莱布尼兹等数学家逐步引进和完善了代数的符号体系。2021/8/30①用字母表示数。②用字母表示数量关系。运算定律、公式、数量关系。加法交换律:a+b=b+a时间、速度和路程的关系:s=vt③用符号表示变化规律。数列的变化规律:1,2,3,5,8,…图形的变化规律,小棒的根数:y=3x+12021/8/304.符号化思想的教学。符号化思想作为数学

6、最基本的思想之一,数学课程标准把培养学生的符号意识作为必学的内容,并提出了具体要求,足以证明它的重要性。教师在日常教学中要给予足够的重视,并落实到课堂教学目标中。学生只有理解和掌握了数学符号的内涵和思想,才有可能利用它们进行正确的运算、推理和解决问题。2021/8/30二、模型思想1.模型思想的概念。数学模型是用数学语言概括地或近似地描述现实世界事物的特征、数量关系和空间形式的一种数学结构。从广义角度讲,数学的概念、定理、规律、法则、公式、性质、数量关系式、图表、程序等都是数学模型。数学的模型思想是一般化的思想方法,数学模型的主要表现形式是数学

7、符号表达式和图表,因而它与符号化思想有很多相通之处,同样具有普遍的意义。不过,也有很多数学家对数学模型的理解似乎更注重数学的应用性,即把数学模型描述为特定的事物系统的数学关系结构。如通过数学在经济、物理、农业、生物、社会学等领域的应用,所构造的各种数学模型。为了把数学模型与数学知识或是符号思想明显地区分开来,主要从侠义的角度讨论数学模型,即重点分析小学数学的应用及数学模型的构建。2021/8/302.模型思想的重要意义。数学模型是运用数学的语言和工具,对现实世界的一些信息进行适当的简化,经过推理和运算,对相应的数据进行分析、预测、决策和控制,并

8、且要经过实践的检验。如果检验的结果是正确的,便可以指导我们的实践。如上所述,数学模型在当今市场经济和信息化社会已经有比较广泛的应用;因而,模型思想在数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。