资源描述:
《最全面的初中数学思维导图及例题解析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、最全面的初中数学思维导图及例题解析,7张图学完初中数学孩子的成长之路2015-12-3112:04初屮数学在整个数学学科的学习中是很重要的一个阶段。小学数学没学好的,趁这个时候赶紧补上,为高中的学习打下坚实的基础,提升自己的逻辑思维能力。下面为大家整理了初中数学的思维导图,希望对每一个有需要的孩子都有所帮助。一、全等三角形百角三角形全等三角形的判定普通三角形貝备昔通三角形的判定方法斜边和一条直角边(HL)边边边(SSS)边角边(SAS)角边角(ASA)角角边(AAS)角平分线的性质角平分线上任意一点到角两边的距禽相等尺规作图全等三
2、角形找夹角(SAS)已知两边找直角(HL)找第三边(SSS)边为角的邻边考察题型已知一边一角已知两角找己知角的另一边(SAS)找已知边的对角(AAS)找夹已知边的角(ASA)边为角的对边.找任意角(AAS)找两角的夹边(ASA)找(AAS)对应边相等全等三角形的性质对应角相等对应中线、高和平分线相等面积相等例如图所示,AABC・AD是ZBAC的外角的平分线,P是AD上异于点A的任总一点.试比较PB+PC与AB+AC的大小,并说明理由.解:PB+POAB+AC■理由:在BA的延K线上取一点E,使AE=AC,连接EP,则AACP空△A
3、EP(SAS),所以PC=P.E.rnAPBE・因为PB+P.E>BE,而BE=ABME=AB+AC.所以PB+POAB+AC・二、相似三角形相似三角形的对应角相等相角形的对应边成比例相似三角形的性质相似三角形的对应高线的比等于相似比相似三角形的对应中线的t洋于相似比相似三角形的对应角平分线的比等于相似比相似三角形的周长比等于相似比相似三角形的面积比等于相似比的平方相角形具有传递性定义比例相似形状相同、对应角相等、对应边成比例的图形两个比值相等的式子形状相同对应角相等相似三角形面积比是对应边比值的平方对应边成比例周长比等于对应边之
4、比相彳以三角形的定义相似三角形的定义、表示方法、相似比表示方法相似比两边对应成比例夹角相等普通三角形相彳妊角形的判定包对軌比例两角对应相等直角三角形具备普通三角形的判定方法F直角边与斜边对应成比例过点B作BE丄CD于点E,B■/ZCDB=60°,ZCBD=75°ZDBE=30°,ZCBE=ZCBD—ZDBE=75°—30°=45°・・・Acbe杲等腰直角三角形.TAB二3AD,设AD=k,MAB=3k,BD=2k-*.DE=k,BE=®・•・5C=-./6k.BD_2k…丽一赢一厉BC_屁_-J2A3=^T=73.BD_BC"5C
5、=AS/.Aabc^Acbd三、几何初步和三角形角的定义角角的分类角的计算和比较几何初步直线、论mSB义两条直线相交相交线/对两直线垂直及其性质内错角几何初步和三角形同位角同旁内角三角形三角形相关定义和概念猊角三角形按角分类R直角三角形钝角三角形三角形分类等边三角形按边分类等腰三角形普通三角形三角形卜3三角形的内外角关系镇嵌平行线两条宜线被策三条直线所截平行线的性质和判定平行公理及堆论如图,AD、BE、CF是三条直线,Z1=52°,Z2=128°,说明:BE//CF说明:利用同位角相等来进行判定悶为AD为宣线,所以Z1和ZCBE为
6、邻补角,则Z1+ZCBE=180%所以ZCBE=180°-Z1=180°-52°=128°又Z2=128%所以Z2=ZCBE,所以BE//CF(同位角相等,两直线平行)四、投影与视图投影与视图用光线照射物理,在某个平面上得到的影子定义平行碗分类中心投影视点、视线和盲区由平行的光线照射所形成的强从一点发出的光线照射所形成的投影与投影面垂直的光线照射所形成的投影定义从某一T角度观察物理所看到的图像主视图视图三视图俯视图左视图立体图形的表面展开图典型殛-张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有个碟子.B
7、o言g主视图左视图解析:主视團、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:易得三摞碟子数分别为3,4,5则这个桌子上共有12个碟子.五、圆定义圆的认识在一^平面内,线段0阳尧固定端点O旋转一周,另F点A所形成的图形对称性旋转不变性几何表不o为圆心的圆记着"Oon三角形外接圆和内切圆外接圆内切圆圆的位置与点的位置关系与直线的位置关系与圆的位置关系点在圆上点在圆外点在圆内相切相乂相离外切相切内切相交相离外离内含面积的计算圆面积、扇形面积圆柱体、圆锥体与圆相关的计算正多边形与圆的相关计算直线与圆的计算圆与圆的计算圆
8、周角定理与圆相关的定理圆心角垂径定理(1)求证:CF=BF、图(2)若AD=2,O0的半径为3,求BC的长.答薬:证明:(I)连结AC,如图10丁C是H加的中点二Zbdc=Zdbc又Zbdc"bac在三角形ABC中,ZaCB=90%CE丄AB乙BC