电容式传感器

电容式传感器

ID:43707581

大小:497.50 KB

页数:62页

时间:2019-10-13

电容式传感器_第1页
电容式传感器_第2页
电容式传感器_第3页
电容式传感器_第4页
电容式传感器_第5页
资源描述:

《电容式传感器》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、5.1电容式传感器的工作原理和结构5.2电容式传感器的灵敏度及非线性5.3电容式传感器的测量电路5.4电容式传感器的应用第5章电容式传感器返回主目录第5章电容式传感器5.1电容式传感器的工作原理和结构由绝缘介质分开的两个平行金属板组成的平板电容器,如果不考虑边缘效应,其电容量为式中:ε——电容极板间介质的介电常数,ε=ε0·εr,其中ε0为真空介电常数,εr为极板间介质相对介电常数;A——两平行板所覆盖的面积;d——两平行板之间的距离。当被测参数变化使得式(5-1)中的A,d或ε发生变化时,电容量C也随之变化。如果保持其中两个参数不变

2、,而仅改变其中一个参数,就可把该参数的变化转换为电容量的变化,通过测量电路就可转换为电量输出。因此,电容式传感器可分为变极距型、变面积型和变介质型三种类型。一、变极距型电容传感器图5-1为变极距型电容式传感器的原理图。当传感器的εr和A为常数,初始极距为d0时,由式(5-1)可知其初始电容量C0为d若电容器极板间距离由初始值d0缩小Δd,电容量增大ΔC,则有C=C0+ΔC=由式(5-3)可知,传感器的输出特性C=f(d)不是线性关系,而是如图5-2所示双曲线关系。此时C1与Δd近似呈线性关系,所以变极距型电容式传感器只有在Δd/d0很小时,

3、才有近似的线性输出。另外,由式(5-4)可以看出,在d0较小时,对于同样的Δd变化所引起的ΔC可以增大,从而使传感器灵敏度提高。但d0过小,容易引起电容器击穿或短路。为此,极板间可采用高介电常数的材料(云母、塑料膜等)作介质(如图5-3所示),此时电容C变为(5-5)式中:εg——云母的相对介电常数,εg=7;ε0——空气的介电常数,ε0=1;d0——空气隙厚度;dg——云母片的厚度。云母片的相对介电常数是空气的7倍,其击穿电压不小于1000kV/mm,而空气的仅为3kV/mm。因此有了云母片,极板间起始距离可大大减小。同时,式(

4、5-5)中的(dg/ε0εg)项是恒定值,它能使传感器的输出特性的线性度得到改善。一般变极板间距离电容式传感器的起始电容在20~100pF之间,极板间距离在25~200μm的范围内,最大位移应小于间距的1/10,故在微位移测量中应用最广。二、变面积型电容式传感器图5-4是变面积型电容传感器原理结构示意图。图5-4变面积型电容传感器原理图C=C0-C=式中C0=ε0εrb0L0/d0为初始电容。电容相对变化量为很明显,这种形式的传感器其电容量C与水平位移Δx是线性关系。图5-5是电容式角位移传感器原理图。当动极板有一个角位移θ时,与定极板

5、间的有效覆盖面积就改变,从而改变了两极板间的电容量。当θ=0时,则图5-5电容式角位移传感器原理图C0=ε0εrA0d0(5-8)式中:εr——介质相对介电常数;d0——两极板间距离;A0——两极板间初始覆盖面积。当θ≠0时,则C1=ε0εrA0(5-9)从式(5-9)可以看出,传感器的电容量C与角位移θ呈线性关系。三、变介质型电容式传感器图5-6是一种变极板间介质的电容式传感器用于测量液位高低的结构原理图。设被测介质的介电常数为ε1,液面高度为h,变换器总高度为H,内筒外径为d,外筒内径为D,则此时变换器电容值为式中:ε—

6、—空气介电常数;C0——由变换器的基本尺寸决定的初始电容值,C0=。由式(5-10)可见,此变换器的电容增量正比于被测液位高度h。变介质型电容传感器有较多的结构型式,可以用来测量纸张,绝缘薄膜等的厚度,也可用来测量粮食、纺织品、木材或煤等非导电固体介质的湿度。图5-7是一种常用的结构型式。图中两平行电极固定不动,极距为d0,相对介电常数为εr2的电介质以不同深度插入电容器中,从而改变两种介质的极板覆盖面积。传感器总电容量C为式中:L0,b0——极板长度和宽度;L——第二种介质进入极板间的长度。若电介质εr1=1,当L=0时,传感器初

7、始电容C0=ε0εr1L0b0/d0。当介质εr2进入极间L后,引起电容的相对变化为可见,电容的变化与电介质εr2的移动量L呈线性关系。5.2电容式传感器的灵敏度及非线性由以上分析可知,除变极距型电容传感器外,其它几种形式传感器的输入量与输出电容量之间的关系均为线性的,故只讨论变极距型平板电容传感器的灵敏度及非线性。由式(5-3)可知,电容的相对变化量为当时,则上式可按级数展开,故得由式(5-14)可见,输出电容的相对变化量ΔC/C与输入位移Δd之间呈非线性关系。当Δd/d01时,可略去高次项,得到近似的线性:电容传感器的灵敏度为它说明了单

8、位输入位移所引起输出电容相对变化的大小与d0呈反比关系。如果考虑式(5-14)中的线性项与二次项,则由此可得出传感器的相对非线性误差δ为由式(5-16

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。