欢迎来到天天文库
浏览记录
ID:43686842
大小:1.49 MB
页数:28页
时间:2019-10-12
《-工程材料(精品)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、清华大学《工程材料》32学时讲稿2/16原子的空间排布:理想晶体和实际晶体(教材P19-P22)材料微观组织:合金相,固溶体和化合物(教材P23—P29)一、实际金属的晶体结构在实际应用的金属材料中,总是不可避免地存在着一些原子偏离规则排列的不完整性区域,这就是晶体缺陷。一般说来,金属中这些偏离其规定位置的原子数很少,即使在最严重的情况下,金属晶体中位置偏离很大的原子数目至多占原子总数的千分之一。因此,从总体来看,其结构还是接近完整的。尽管如此,这些晶体缺陷不但对金属及合金的性能有重大影响,而且还在扩散、相变、塑性变形和再结晶等过程
2、中扮演重要角色。1.多晶体通常使用的金属都是由很多小晶体组成的,这些小晶体内部的晶格位向是均匀一致的,而它们之间,晶格位向却彼此不同,这些外形不规则的的颗粒状小晶体称为晶粒。每一个晶粒相当于一个单晶体。晶粒与晶粒之间的界面称为晶界。这种由许多晶粒组成的晶体称为多晶体,如图2-9所示。多晶体的性能在各个方向基本上是一致的,这是由于多晶体中,虽然每个晶粒都是各向异性的,但它们的晶格位向彼此不同,晶体的性能在各个方向相互补充和抵消,再加上晶界的作用,因而表现出各向同性。晶粒的尺寸很小,如钢铁材料一般为IO—】〜10_3mm左右,必须在显微
3、镜下才能看见。在显微镜下观察到的金属中晶粒的种类、大小、形态和分布称为显微组织,简称组织。金属的组织对金属的机械性能有很大的影响。2.晶体缺陷实际金属晶体内部,由于铸造、变形等一系列原因,其局部区域原子的规则排列往往受到干扰和破坏,不象理想晶体那样规则和完整,从而影响到金属的许多性能。实际金属晶体中原子排列的这种不完整性,通常称为晶体缺陷。根据晶体缺陷的几何形态特征,一般将它们分为以下三类:(1)点缺陷晶格中某个原子脱离了平衡位置,形成空结点,称为空位。某个晶格间隙挤进了原子,称为间隙原子。材料中总存在着一些其它元素的杂质,它们可以
4、形成间隙原子,也可能取代原来原子的位置,成为置换原子,三种点缺陷的形态见图2-10o图2-10晶体中的点缺陷1、2-空位;3、4一间隙原子;5、6-置换原子空位、间隙原子和外来原子都是晶格的点缺陷。它们破坏了原子的平衡状态,使晶格发生扭曲,称为晶格畸变。点缺陷的存在,提高了材料的硬度和强度,降低了材料的塑性和韧性。(2)线缺陷晶体中最普通的线缺陷就是位错,它是在晶体中某处有一列或若干列原子发生了有规律的错排现象。这种错排现象是晶体内部局部滑移造成的,根据局部滑移的方式不同,可以形成不同类型的位错,图2-11所示为常见的一种刃型位错。
5、从图中可见,晶体在切应力的作用下,右上部分相对于右下部分沿滑移面滑移了一个原子间距,而左上部分尚未滑移,结果在在晶格的上半部分挤出了一个多余的原子面EFGH,这个多余原子面的下边缘EF像刀刃一样垂直切入,使晶体中位于滑移面上下两部分晶体间产生了错排现象,因而称之为刃型位错。多余原子面的边缘EF称为“位错线”,在位错线周围,由于原子的错排使晶格发生了畸变,致使滑移面上部的原子受到压应力;滑移面下部的原子受到拉应力。0a•yy&ft£翳*>u•uu■■11&半“hft■aaa■o・$9・txCk••™°fttkft❹(1■■'JM1*・
6、•4a■«理论值强
7、当位错大量产生后,强度又提高。由于没有缺陷的晶体很难得到,所以生产中一般依靠增加位错密度来提高金属强度,但塑性随之降低。(3)面缺陷面缺陷包括晶界和亚晶界。如前所述,晶界是晶粒与晶粒之间的界面,由于晶界原子需要同时适应相邻两个晶粒的位向,就必须从一种晶粒位向逐步过渡到另一种晶粒位向,成为不同晶粒之间的过渡层,因而晶界上的原子多处于无规则状态或两种晶粒位向的折衷位置上(图2-13)。另外,晶粒内部也不是理想晶体,而是由位向差很小的称为嵌镶块的小块所组成,称为亚晶粒,尺寸为1(T〜10-6cmo亚晶粒的交界称为亚晶界。晶粒之间位向差较大
8、,亚晶粒之间位向差较小。大于10°〜15°的晶界称为大角度晶界,亚晶界是小角度晶界,其结构可以看成是位错的规则排列,见图2-14o晶界图A13晶界示意图亚晶界E2-14亚晶界示意图面缺陷能提高金属材料的强度和塑性。细化晶粒是改善金属机
此文档下载收益归作者所有