基于粒子滤波降噪技术的齿轮箱故障诊断分析

基于粒子滤波降噪技术的齿轮箱故障诊断分析

ID:43548673

大小:1.57 MB

页数:82页

时间:2019-10-10

基于粒子滤波降噪技术的齿轮箱故障诊断分析_第1页
基于粒子滤波降噪技术的齿轮箱故障诊断分析_第2页
基于粒子滤波降噪技术的齿轮箱故障诊断分析_第3页
基于粒子滤波降噪技术的齿轮箱故障诊断分析_第4页
基于粒子滤波降噪技术的齿轮箱故障诊断分析_第5页
资源描述:

《基于粒子滤波降噪技术的齿轮箱故障诊断分析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、StudyonFaultDiagnosisofGearboxBasedonNoiseReductionbyParticleFilterAbstractGearboxsystemiscommonlyusedinthetransmissionofrotatingmachineryequipment,whichperformancefineorbadisdirectlyrelatedtoqualityoftheentiredevice.Ithasgreatsignificancetomonitoritsstate,detectfaultstim

2、elyandclassifythefaults,whichalsocanpreventunnecessaryloss.Generally,samplingsignalismingledwithstrongbackgroundnoise,whichsomeusefulsignalmaybecoveredforthebadlyenvironmentofgearboxworking.Soitneedstocarryoutnoisereductionbeforefailureanalysis-Particlefilteringisanewmode

3、l-basedstateestimationtechnique.Studyingtheprincipleofparticlefilterin-depththenuseittothenoisereductionofgearvibrationaccelerationsignals.Providedthatthesignalmodelandnoisestatisticsisknowwhenuseparticlefiltertechnologytodenoise.Inthispaper,it'srealizedasfollows:firstly,

4、establishtimeseriesARmodelofthevibrationaccelerationsignal,thenthecoefficientsofthisARmodelastheparticlefiltercoefficientsofthestateequation;Usewavelettransformthresholdde-noisingmethodtoextractnoisesignalwhencomprehendtheprincipleofnoisereductionbywavelettheory.Thepartic

5、lefilterobservationequationwillbeusetheextractingnoisewhichassumedadditive.Basedontheabovetheoreticalanalysis,thegearboxvibrationaccelerationsignalsampledthroughexperimentisanalyzedandprocessed.Thefirststepisdenoisedbyparticlefilter;secondstepisclassifyingthefaultmodebyBP

6、neuralnetwork.Asanadaptivepatternrecognitiontechnology,neuralnetworkhasbeenwidelyappliedinthefieldoffaultpatternrecognitionandthetheoreticalresearchismature.Inthispaper,weusetwosetsofdatatodiagnosefaultsbyBPneuralnetwork,ofwhichoneisdenoisedbyparticlefilter,andtheotherisn

7、ot.ExtractingtheenergyspectrumscalesastheBPneuralnetworkinputvector.Thediagnosisresultsshowthatthedatadenoisedbyparticlefilterisbetterthanotherafternetworktraining.Itisalsoconfirmedthattheeffectofnoisereductionbyparticlefilterisgood.Keywords:gearbox,diagnosis,particlefilt

8、er,neuralnetwork目录1绪论11.1课题研究背景和意义11.1.1课题来源11.1.2选题意义11.2齿轮箱故障诊断的研究现状和发展趋势11.2.1齿轮箱故障诊断的研究现状112

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。