资源描述:
《高考数学复习必做的数列综合题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、高考数学三轮复习必做的数列综合题21.数列,,的各项均为正数,为其前项和,对于任意,总有aSa,,成等差数列.n,N^aSnnnnnn(?)求数列,,的通项公式;annxln,,,(?)设数列,,的前项和为,且,求证:对任意实数(是常数,,2.71828)bb,T,,x,1,eneennn2an和任意正整数,总有2;,Tnnn,1*,,a,c,(n,N),,,,(?)正数数列c中,•求数列c中的最大项.nn,Inn2*2Saa,,(?)解:由已知:对于,总有?成立n,Nnnn22Saa,,?(n?2)?nn,,lln,1222a,a,
2、a,a,a?--?得nnnn,n,11,,,,?a,a,a,aa,ann,Inn,Inn,1a,aa,a,1?均为正数,?(n?2)nn,Inn,1,,?数列a是公差为1的等差数列n22Saa,,又n=l时,,解得a=l1111*?a,n.()n,Nnnlxlnb,(?)证明:?对任意实数,和任意正整数n,总有?・,x,1,en22nan111111T,,,?,,1,,,?,?n222,,1,22,3n,lnl2n111111,1,1,,,,?,,,2,,2223n,Inn2a,c,2,c,2(?)解:由已知,2113443a,c,3
3、,c,3,a,c,4,c,4,2,32243355a,c,5,c,5544ccccc,易得12234Doasx猜想n?2时,,,是递减数列.cn1,x,lnxlnxl,lnxx,令,,,,fx,,则fx,,22xxx,?当,,x,3时,lnx,1,贝!jl,lnx,0,即fx,0.?在内为单调递减函数.,,,,3,,,fxInn,1,,n,la,clnc,知由・nnn,In,1?n?2时,,,是递减数列.即,,是递减数列.lnccnn3,,又cc,,?数列c中的最大项为c,3.nl22f(0),12*n2(设f(x)二,定义f(x)=
4、f,f(x),,a=(n?N).ln+llnnf(0),21,xn(1)求数列,a,的通项公式;n24n,n*(2)若,Q=(n?N),试比较9T与T,a,2a,3a,?,2nan2n2nl232n24n,4n,IQ的大小,并说明理由.nlln+llnl,f(0)42,2n22,11解:(l)?f(0)=2,a==,f(0)=f,f(0),=,2,lf(0),ll,f(0)f(0),lfl,(0)lln,lnnn?a====-=-a.n+ln2f(0),24,2f(0)f(0),222n,Inn,2fl,(0)nlllln,1?数列,
5、a,是首项为,公比为-的等比数列,?沪()・,nn4242(2)?T=a+2a+3a+-••+(2n-1)a+2na,2nl232n,12n111111?T=(-a)+(-)2a+(-)3a+…+(-)(2n-l)a+2na,2nl232nl2n222222二a+2a+・・・+(2n,l)a,na.232n2n3两式相减,得T=a+a+a+・・・+a+na.2nl232n2n2Doasx11,,2nl(),,,,4231lllnll,,2n,12n2n,l?T=+nX(-)=-(-)+(-).2n124266242,123n,Illl
6、nll2n2n,1T=-(-)+(-)=(1-).2n2n99262923n,1?9T=1-2n2n23n,1又Q二1-,n2(2n,1)2n2当n=l时,2=4,(2n+l)=9,?9T,Q;2nn2n2当n二2时,2=16,(2n+l)二25,?9T,Q;2nn2nn2013n22当n?3时,,2,[(1,1)],(C,C,C,?,C),(2n,l)nnnn?9T,Q.2nnx,0,,3(设不等式组所表示的平面区域为D,记D内的格点(格点即横坐标和纵坐标均为y,Onn,,y,,nx,3n,整数的点)的个数为f(n)(n?N*).(
7、1)求f仃)、f⑵的值及f(n)的表达式;n(2)设b=2f(n),S为{b}的前n项和,求S;nnnnf(n)f(n,1)T,(3)记,若对于一切正整数n,总有T?m成立,求实数m的取值nnn2范围.(l)f(l)=3f(2)=6当x=l时,y=2n,可取格点2n个;当x=2时,y=n,可取格点n个?f(n)=3nn(2)由题意知:b=3n?2n,123nlnS二3?2+6?2+9?2+・・・+3(n,1)?2+3n?2n23nn+l?2S二3?2+6?2+・・・+3(n,l)?2+3n?2n123nn+l?,S二3?2+3?2+3
8、?2+・・・3?2,3n?2n2nn+l=3(2+2+・・・+2),3n?2Doasxn,12,2n,1=3?,3n21,2n+ln+1=3(2,2),3nn+1?,S=(3,3n)2,6nn+1S二6+(3n,3)2n