(第1部分)微分方程(简单模型)

(第1部分)微分方程(简单模型)

ID:43228174

大小:553.50 KB

页数:22页

时间:2019-10-05

(第1部分)微分方程(简单模型)_第1页
(第1部分)微分方程(简单模型)_第2页
(第1部分)微分方程(简单模型)_第3页
(第1部分)微分方程(简单模型)_第4页
(第1部分)微分方程(简单模型)_第5页
资源描述:

《(第1部分)微分方程(简单模型)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、微分方程简单模型重庆邮电大学数理学院在研究某些实际问题时,经常无法直接得到各变量之间的联系,问题的特性往往会给出关于变化率的一些关系。利用这些关系,我们可以建立相应的微分方程模型。在自然界以及工程技术领域中,微分方程模型是大量存在的。它甚至可以渗透到人口问题以及商业预测等领域中去,其影响是广泛的。当我们描述实际对象的某些特性随时间(空间)而演变的过程、分析它的变化规律、预测它的未来形态、研究它的控制手段时。通常要建立对象的动态模型。例(理想单摆运动)建立理想单摆运动满足的微分方程,并得出理想单摆运动的周期公式

2、。从图3-1中不难看出,小球所受的合力为mgsinθ,根据牛顿第二定律可得:从而得出两阶微分方程:(3.1)这是理想单摆应满足的运动方程(3.1)是一个两阶非线性方程,不易求解。当θ很小时,sinθ≈θ,此时,可考察(3.1)的近似线性方程:(3.2)由此即可得出(3.2)的解为:θ(t)=θ0cosωt其中当时,θ(t)=0故有MQPmg图3-1(3.1)的近似方程例求平面上过点(1,3)且每点切线斜率为横坐标2倍的曲线方程.解:设所求的曲线方程为由导数的几何意义,应有即又由条件:曲线过(1,3),即于是得

3、故所求的曲线方程为:导弹追踪问题设位于坐标原点的甲舰向位于x轴上点A(1,0)处的乙舰发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度v0(常数)沿平行于y轴的直线行驶,导弹的速度是5v0,求导弹运行的曲线方程.乙舰行驶多远时,导弹将它击中?(解析法)由(1),(2)消去t,整理得模型:马尔萨斯(Malthus)模型马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率r基本上是一常数,(r=b-d,b为出生率,d为死亡率),因而提出了著名的人口指数增长模型。分析与建模:人口的净增长率是一个常数,也就是

4、单位时间内人口增长量与当时人口数成正比。设t时刻人口数为N(t),t=t0时,N(t0)=N0,则这个方程的解为:马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。令种群数量翻一番所需的时间为T,则有:故即Malthus模型模型检验比较历年的人口统计资料,可发现人口增长的实际情况与马尔萨斯模型的预报结果基本相符,例如,1961年世界人口数为30.6(即3.06×109),人口增长率约为2%,人口数大约每35年增加一倍。检查1700年至1961的260年人口实际数量,发现两者几乎完全一致,且按马氏模

5、型计算,人口数量每34.6年增加一倍,两者也几乎相同。模型预测假如人口数真能保持每34.6年增加一倍,那么人口数将以几何级数的方式增长。例如,到2510年,人口达2×1014个,即使海洋全部变成陆地,每人也只有9.3平方英尺的活动范围,而到2670年,人口达36×1015个,只好一个人站在另一人的肩上排成二层了。故马尔萨斯模型是不完善的。几何级数的增长Malthus模型实际上只有在群体总数不太大时才合理,到总数增大时,生物群体的各成员之间由于有限的生存空间,有限的自然资源及食物等原因,就可能发生生存竞争等现象

6、。所以Malthus模型假设的人口净增长率不可能始终保持常数,它应当与人口数量有关。Logistic模型人口净增长率应当与人口数量有关,即:r=r(N)从而有:(1)r(N)是未知函数,但根据实际背景,它无法用拟合方法来求。为了得出一个有实际意义的模型,我们不妨采用一下工程师原则。工程师们在建立实际问题的数学模型时,总是采用尽可能简单的方法。r(N)最简单的形式是常数,此时得到的就是马尔萨斯模型。对马尔萨斯模型的最简单的改进就是引进一次项(竞争项)此时得到微分方程:或(2)(2)被称为Logistic模型或生

7、物总数增长的统计筹算律,是由荷兰数学生物学家弗赫斯特(Verhulst)首先提出的。一次项系数是负的,因为当种群数量很大时,会对自身增大产生抑制性,故一次项又被称为竞争项。(2)可改写成:(3)(3)式还有另一解释,由于空间和资源都是有限的,不可能供养无限增长的种群个体,当种群数量过多时,由于人均资源占有率的下降及环境恶化、疾病增多等原因,出生率将降低而死亡率却会提高。设环境能供养的种群数量的上界为K(近似地将K看成常数),N表示当前的种群数量,K-N恰为环境还能供养的种群数量,(3)指出,种群增长率与两者的

8、乘积成正比,正好符合统计规律,得到了实验结果的支持,这就是(3)也被称为统计筹算律的原因。对(3)分离变量:两边积分并整理得:令N(0)=N0,求得:故(3)的满足初始条件N(0)=N0的解为:(4)易见:N(0)=N0,N(t)的图形请看右图模型检验用Logistic模型来描述种群增长的规律效果如何呢?1945年克朗比克(Crombic)做了一个人工饲养小谷虫的实验,数学生物学家高斯(E·F·Ga

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。