第8章Excel教程__回归分析

第8章Excel教程__回归分析

ID:43170641

大小:1.82 MB

页数:51页

时间:2019-10-01

第8章Excel教程__回归分析_第1页
第8章Excel教程__回归分析_第2页
第8章Excel教程__回归分析_第3页
第8章Excel教程__回归分析_第4页
第8章Excel教程__回归分析_第5页
资源描述:

《第8章Excel教程__回归分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第8章回归分析8.1线性回归分析的基本原理8.2图表分析与回归函数分析8.3Excel回归分析工具8.4多元回归分析8.5非线性回归分析本章学习目标u回归分析的基本思想u利用Excel图表进行线性回归分析u利用Excel回归分析工作表函数进行线性回归分析u利用Excel回归分析工具进行一元及多元线性回归分析u非线性回归分析的基本思路8.1线性回归分析的基本原理8.1.1回归分析的概念8.1.2回归分析的主要内容返回首页8.1.1回归分析的概念首先要区分两种主要类型的变量:一种变量相当于通常函数关系中的

2、自变量,对这样的变量能够赋予一个需要的值(如室内的温度、施肥量)或者能够取到一个可观测但不能人为控制的值(如室外的温度),这样的变量称为自变量;自变量的变化能引起另一些变量(如水稻亩产量)的变化,这样的变量称为因变量。由一个或一组非随机变量来估计或预测某一个随机变量的观测值时,所建立的数学模型及所进行的统计分析,称为回归分析。因此,回归分析是研究随机变量与非随机变量之间的数量关系的一种数学方法。如果所建立的模型是线性的就称为线性回归分析。线性回归分析不仅告诉我们怎样建立变量间的数学表达式,即经验公式,

3、而且还利用概率统计知识进行分析讨论,判断出所建立的经验公式的有效性,从而可以进行预测或估计。返回本节8.1.2回归分析的主要内容回归分析的内容包括如何确定因变量与自变量之间的回归模型;如何根据样本观测数据,估计并检验回归模型及未知参数;在众多的自变量中,判断哪些变量对因变量的影响是显著的,哪些变量的影响是不显著的;根据自变量的已知值或给定值来估计和预测因变量的值。Excel提供了许多回归分析的方法与工具,它们可用于不同的分析目的。返回本节8.2图表分析与回归函数分析8.2.1利用图表进行分析8.2.2

4、Excel中的回归分析工作表函数8.2.3利用工作表函数进行回归分析返回首页8.2.1利用图表进行分析例8-1某种合成纤维的强度与其拉伸倍数之间存在一定关系,图8-1所示(“线性回归分析”工作表)是实测12个纤维样品的强度y与相应的拉伸倍数x的数据记录。试求出它们之间的关系。(1)打开“线性回归分析”工作表。(2)在工具栏上选择“图表向导”按钮,单击打开图表向导对话框,如图8-2所示,在“图表类型”列表框中选择“XY散点图”,单击“下一步”按钮进入图表向导步骤2。(3)在图表向导步骤2对话框的“数据区

5、域”中输入“B2:C13”,选择“系列产生在”为“列”,如图8-3所示,单击“下一步”按钮进入步骤3。(4)在图表向导步骤3的对话框中,打开“图例”页面,取消“显示图例”,省略标题,如图8-4所示。(5)单击“完成”按钮,得到XY散点图如图8-5所示。(6)在散点图中,把鼠标放在任一数据点上,右击,在快捷菜单中选择“添加趋势线”,打开趋势线对话框。(7)在“添加趋势线”对话框中打开“类型”页面,选择“线性”选项,在“选项”页面中选择“显示公式”和“显示R平方”选项,单击“确定”按钮,得到趋势回归图,如

6、图8-6所示。图8-1“线性回归分析.xls”工作表图8-2图表向导(步骤1)图8-3图表向导(步骤2)图8-4图表向导(步骤3)图8-5XY散点图图8-6趋势回归直线返回本节8.2.2Excel中的回归分析工作表函数Excel提供的回归分析工作表函数主要有以下几个:(1)截距函数。(2)斜率函数。(3)测定系数函数。(4)估计标准误差函数。(1)截距函数。其功能是利用现有的x值与y值计算直线与y轴的截距。截距为穿过已知的known_x's和known_y's数据点的线性回归线与y轴的交点。当自变量为

7、0时,使用INTERCEPT函数可以决定因变量的值。例如,当所有的数据点都是在室温或更高的温度下取得的,可以用INTERCEPT函数预测在0°C时金属的电阻。语法:INTERCEPT(known_y's,known_x's)图8-7x、y数据图8-8计算截距(2)斜率函数。该函数返回根据known_y's和known_x's中的数据点拟合的线性回归直线的斜率。斜率为直线上任意两点的垂直距离与水平距离的比值,也就是回归直线的变化率。语法:SLOPE(known_y's,known_x's)其中:Know

8、n_y's为数字型因变量数据点数组或单元格区域;Known_x's为自变量数据点集合。(3)测定系数函数。(3)测定系数函数。该函数返回根据known_y's和known_x's中数据点计算得出的乘积矩相关系数的平方。R平方值可以解释为y方差与x方差的比例。语法:RSQ(known_y's,known_x's)回归直线的斜率计算公式如下:图8-9计算斜率(4)估计标准误差函数。该函数返回通过线性回归法计算每个x的y预测值时所产生的标准误差。标准误差用来度

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。