2020版高考数学第二章函数、导数及其应用第十节变化率与导数、导数的计算学案文(含解析)新人教A版

2020版高考数学第二章函数、导数及其应用第十节变化率与导数、导数的计算学案文(含解析)新人教A版

ID:43004937

大小:244.82 KB

页数:7页

时间:2019-09-25

2020版高考数学第二章函数、导数及其应用第十节变化率与导数、导数的计算学案文(含解析)新人教A版_第1页
2020版高考数学第二章函数、导数及其应用第十节变化率与导数、导数的计算学案文(含解析)新人教A版_第2页
2020版高考数学第二章函数、导数及其应用第十节变化率与导数、导数的计算学案文(含解析)新人教A版_第3页
2020版高考数学第二章函数、导数及其应用第十节变化率与导数、导数的计算学案文(含解析)新人教A版_第4页
2020版高考数学第二章函数、导数及其应用第十节变化率与导数、导数的计算学案文(含解析)新人教A版_第5页
资源描述:

《2020版高考数学第二章函数、导数及其应用第十节变化率与导数、导数的计算学案文(含解析)新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第十节 变化率与导数、导数的计算2019考纲考题考情1.导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率=为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′X=x0,即f′(x0)==。(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数)。相应地,切线方程为y-y0=f′(x0)·(x-x0)。(3)函数f(x)的导函数称函数f′(x)=为f(x)的导函数。2.导数公式及运算法则(1)基本初等函数的导数公式原函数导函数f(

2、x)=c(c为常数)f′(x)=0f(x)=xn(n∈Q)f′(x)=nxn-1f(x)=sinxf′(x)=cosxf(x)=cosxf′(x)=-sinx续表原函数导函数f(x)=axf′(x)=axlnaf(x)=exf′(x)=exf(x)=logaxf′(x)=f(x)=lnxf′(x)=  (2)导数的运算法则①[f(x)±g(x)]′=f′(x)±g′(x)。②[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x)。③′=(g(x)≠0)。1.求导常见易错点:①公式(xn)′=nxn-1与(ax)′=axlna相互混淆;②公式中“+”“-”号记混,如出现如下错误:′=

3、,(cosx)′=sinx。2.f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,且(f(x0))′=0。3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点。4.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小

4、f′(x)

5、反映了变化的快慢,

6、f′(x)

7、越大,曲线在这点处的切线越“陡”。一、走进教材1.(选修1-1P86B组T1改编)曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是(  )A.-9B.-3C.9D.15解析 因为y=x3+11,所以y

8、′=3x2,所以y′

9、x=1=3,所以曲线y=x3+11在点P(1,12)处的切线方程为y-12=3(x-1)。令x=0,得y=9。故选C。答案 C2.(选修1-1P80B组T1改编)在高台跳水运动中,ts时运动员相对于水面的高度(单位:m)是h(t)=-4.9t2+6.5t+10,则运动员的速度v=_______m/s,加速度a=________m/s2。解析 v=h′(t)=-9.8t+6.5,a=v′(t)=-9.8。答案 -9.8t+6.5 -9.8二、走近高考3.(2018·全国卷Ⅱ)曲线y=2lnx在点(1,0)处的切线方程为________。解析 由y=f(x)=2lnx,得f

10、′(x)=,则曲线y=2lnx在点(1,0)处的切线的斜率为k=f′(1)=2,则所求切线方程为y-0=2(x-1),即y=2x-2。答案 y=2x-24.(2017·全国卷Ⅰ)曲线y=x2+在点(1,2)处的切线方程为________。解析 因为y′=2x-,所以在点(1,2)处的切线方程的斜率为k=y′

11、x=1=2×1-=1,所以切线方程为y-2=x-1,即y=x+1。答案 y=x+1三、走出误区微提醒:①混淆平均变化率与导数的区别;②不用方程法解导数求值;③导数的运算法则运用不正确。5.函数f(x)=x2在区间[1,2]上的平均变化率为________,在x=2处的导数为_______

12、_。解析 函数f(x)=x2在区间[1,2]上的平均变化率为=3。因为f′(x)=2x,所以f(x)在x=2处的导数为2×2=4。答案 3 46.已知f(x)=x2+3xf′(2),则f(2)=________。解析 因为f′(x)=2x+3f′(2),令x=2,得f′(2)=-2,所以f(x)=x2-6x,所以f(2)=-8。答案 -87.已知f(x)=x3,则f′(2x+3)=________。解析 f′(x)=3x2,所以f′(2x+3)=3(2x+3)2。答案 3(2x+3)2考点一 导数的运算微点小专题         方向1:已知函数解析式求函数的导数【例1】 求下列各函数的导数

13、:(1)y=x;(2)y=tanx;(3)y=2sin2-1。解 (1)先变形:y=x,再求导:y′=′=x。(2)先变形:y=,再求导:y′=′==。(3)先变形:y=-cosx,再求导:y′=-(cosx)′=-(-sinx)=sinx。1.正确运用导数公式。2.求导之前先对函数进行化简减小运算量。方向2:抽象函数求导【例2】 已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。