欢迎来到天天文库
浏览记录
ID:42884492
大小:492.50 KB
页数:5页
时间:2019-09-22
《最大利润问题 (5)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、22.3实际问题与二次函数(第二课时)——商品利润问题执教班级:九(2)班教学任务分析教学目标知识技能1.将实际问题抽象成数学问题,经历函数建模的过程;2.会用二次函数知识求实际问题的最大值或最小值.数学思考在转化、建模中,体验函数知识解决问题的方法,培养学生的合作交流意识和探索精神.解决问题1.通过对商品涨价与降价的分析,感受函数知识在生活中的应用;2.在探究活动中,学会与他人合作并能与他人交流思维过程和探究结果.情感态度通过对生活中实际问题的探究活动,锻炼学生克服困难的意志,建立自信心,提高学习热情.重点用二次
2、函数知识解决商品利润问题.难点能够正确分析和表示实际问题中变量之间的二次函数关系,并求出最大(小)值.教法学法师:引导发现法启发探究法生:自主探究合作交流教学准备制作Powerpoint课件教学流程安排活动流程图温故知新设疑导入合作探究例题变式自主探究拓展提高归纳总结思想升华教学过程设计温故知新师生行为设计意图问题导入:夏季快到了,同学们都想买件T恤衫,如果你是商场销售T恤衫的经理,你该如何定价才能获得最大利润?揭示课题:商品利润问题教师提出问题,设疑,激发学生探究的欲望.进而揭示课题,教师板书.由身边常见的实际情
3、境入手,引发学生对实际生活问题的关注,激发学生的求知欲,调动学生的学习主动性.引例:已知某T恤的进价为每件40元,售价是每件60元,每星期可卖出300件.市场调查反映:如果调整价格 ,每涨价1元,每星期要少卖出10件.要想获得6000元的利润,该T恤应定价为多少元?变式1.已知该T恤的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:每涨价一元,每星期要少卖出10件。该T恤应定价为多少元时,能获得最大利润,最大利润是多少?问1:在这个问题中,总利润是不是一个变量?如果是,它随着哪个量的改变而改
4、变?问2:若设每件涨价x元,总利润为y元。你能列出函数关系式吗?追问1:怎样确定x的取值范围?追问2:这个函数有最大值还是最小值?追问3:用什么方法求最值?请求出最值追问4:定价为多少时,所获利润最大?变式2.已知T教师引导学生分析题意,并填空教师关注:(1)学生能否找到等量关系(2)学生是否能用x表示单件利润和销售数量(3)学生能否列出方程学生合作探究,教师鼓励学生大胆勇敢地描述自己的探究过程.教师关注:(1)学生是否能理清题目中两个变量间的函数关系;(2)学生能否独立列出函数关系式,正确写出自变量的取值范围;(
5、3)学生对实际问题中二次函数最大值的理解程度;教师鼓励学生独立完成解题过程,教师作个别指导.教师引导学生自主探究后合作交流教师关注学生的独立思考及合作交流由实际生活中的问题入手,设置利润问题,渗透用二次函数知识解决实际问题的思想,为后面的学习作铺垫.由浅入深的例题设计,符合学生的实际认知过程,三个“追问”的设置,逐步提升学生分析和解决问题的能力,为后面学生自主探究问题扫清学习障碍.自主探究后合作交流的方式,旨在激发学生独立思考和相互激发思维及互相纠错鼓励学生用自己的语言有条理地、清晰地描述对解题过程,提高语言表达能
6、力和抽象思维推理能力.恤的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能获得最大利润,最大利润是多少?设疑:比较并思考1:根据以上结论,该如何设计营销方案,才能使所获利润最大?思考2:实际销售时,如果两种调价方案所获得的最大利润相差不大时,你会怎么选择?请联系实际谈一谈.(涨价降销量;降价涨销量)计算两种方案的最大利润值,并将数值作比较,确定最终定价.在学生解题时,教师关注:(1)学生是否能理清两种
7、方案所对应的两个变量间的函数关系;(2)学生能否正确列出函数关系式,并根据实际情况写出自变量的取值范围;(3)学生对实际问题中二次函数最大值的理解程度;教师鼓励学生独立完成解题过程后两人进行交流,注意区分两种方案所对应的变量和数值,教师巡视并作指导.教师关注:(1)学生能否根据两种方案计算所得的利润最大值选择营销方案;(2)当两种营销方案所获得的最大利润相差不大时,学生能否根据实际情况分析两种销方式各自的优点?教师重点关注:学生用函数思想解决问题的能力,根据学生解题的实际情况可适当发散,让学生联系实际谈谈如何选择合
8、适的商品促销方式.以比较两种方案最大利润的方式,确定最后定价方案.让学生在前一题探究解答的基础上自己独立完成这道变式题,旨在提高学生对利用二次函数解决实际问题、求最大值的能力,培养学生独立思考的意识设置两个思考的目的是为了将数学问题和实际问题有效结合,让学生形成对事物理性的整体意识.思考1:旨在让学生站在数学的角度上,通过分析数值的大小,决定选择何种方案更适
此文档下载收益归作者所有