待定系数法求二次函数 (2)

待定系数法求二次函数 (2)

ID:42879840

大小:33.50 KB

页数:3页

时间:2019-09-23

待定系数法求二次函数 (2)_第1页
待定系数法求二次函数 (2)_第2页
待定系数法求二次函数 (2)_第3页
资源描述:

《待定系数法求二次函数 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、22.1用待定系数法求二次函数解析式学习目标1、通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。2、能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。3、从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣。教学过程一、合作交流例题精析1、一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,所以,我们把________________________叫做二次函数的一般式。例1已知二次函数的图象过(1,0),(-1,-4)和(0,-3)三点,求这个二次函数解析

2、式。小结:此题是典型的根据三点坐标求其解析式,关键是:(1)熟悉待定系数法;(2)点在函数图象上时,点的坐标满足此函数的解析式;(3)会解简单的三元一次方程组。2、二次函数y=ax2+bx+c用配方法可化成:y=a(x+h)2+k,顶点是(-h,k)。配方:y=ax2+bx+c=__________________=___________________=__________________=a(x+)2+。对称轴是x=-,顶点坐标是(-,),h=-,k=,所以,我们把_____________叫做二次函数的顶点式。例2已知二次

3、函数的图象经过原点,且当x=1时,y有最小值-1,求这个二次函数的解析式。小结:此题利用顶点式求解较易,用一般式也可以求出,但仍要利用顶点坐标公式。请大家试一试,比较它们的优劣。3、一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系。所以,已知抛物线与x轴的两个交点坐标时,可选用二次函数的交点式:y=a(x-x1)(x-x2),其中x1,x2为两交点的横

4、坐标。例3已知二次函数的图象与x轴交点的横坐标分别是x1=-3,x2=1,且与y轴交点为(0,-3),求这个二次函数解析式。想一想:还有其它方法吗?二、应用迁移巩固提高1、根据下列条件求二次函数解析式(1)已知一个二次函数的图象经过了点A(0,-1),B(1,0),C(-1,2);(2)已知抛物线顶点P(-1,-8),且过点A(0,-6);(3)二次函数图象经过点A(-1,0),B(3,0),C(4,10);(4)已知二次函数的图象经过点(4,-3),并且当x=3时有最大值4;三、总结反思突破重点1、二次函数解析式常用的有三种形

5、式:(1)一般式:_______________(a≠0)(2)顶点式:_______________(a≠0)(3)交点式:_______________(a≠0)四、课堂练习P40练习第1、2题

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。