三角形的高、中线和角平分线练习.1.2三角形的高、中线与角平分线练习

三角形的高、中线和角平分线练习.1.2三角形的高、中线与角平分线练习

ID:42833445

大小:126.86 KB

页数:4页

时间:2019-09-22

三角形的高、中线和角平分线练习.1.2三角形的高、中线与角平分线练习_第1页
三角形的高、中线和角平分线练习.1.2三角形的高、中线与角平分线练习_第2页
三角形的高、中线和角平分线练习.1.2三角形的高、中线与角平分线练习_第3页
三角形的高、中线和角平分线练习.1.2三角形的高、中线与角平分线练习_第4页
资源描述:

《三角形的高、中线和角平分线练习.1.2三角形的高、中线与角平分线练习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、11.1.2三角形的高、中线与角平分线基础知识一、选择题1.三角形的角平分线、中线、高线都是()A.线段B.射线C.直线D.以上都有可能2.至少有两条高在三角形内部的三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能3.(2012山东省德州市)不一定在三角形内部的线段是()(A)三角形的角平分线(B)三角形的中线(C)三角形的高(D)三角形的中位线4.在△ABC中,D是BC上的点,且BD:CD=2:1,S△ACD=12,那么S△ABC等于()A.30B.36C.72D.245.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提

2、示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是(  )A.B.C.D.6.可以把一个三角形分成面积相等的两部分的线段是(  )A.三角形的高B.三角形的角平分线C.三角形的中线D.无法确定7.在三角形中,交点一定在三角形内部的有(  )①三角形的三条高线②三角形的三条中线③三角形的三条角平分线④三角形的外角平分线.A.①②③④B.①②③C.①④D.②③8.如果一个三角形三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.下图中,正确画出△ABC的AC边上的高的是()ABCD二、填空题1.如图,在△A

3、BC中,BC边上的高是,在△AEC中,AE边上的高是,EC边上的高是.42.,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,△ABD与△ACD的周长之差为.三、解答题1.如图,在⊿ABC中画出高线AD、中线BE、角平分线CF.   2.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.3.如图,已知:在三角形ABC中,∠C=90º,CD是斜边AB上的高,AB=5,BC=4,AC=3,求高CD的长度.4.用四种不同的方法将三角形面积四等分.45.,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长

4、分为15和6两部分,求该等腰三角形的腰长及底边长.6.如图,在△ABC中,D、E分别是BC、AD的中点,S△ABC=4cm2,求S△ABE..7.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长;(3)作出△ABC的边AC上的中线BE,并求出△ABE的面积;(4)作出△BCD的边BC边上的高DF,当BD=11cm时,试求出DF的长。网Z+X+X+K]4能力提升1.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm

5、2B.1cm2C.cm2D.cm22.如图,S△ABC=1,且D是BC的中点,AE:EB=1:2,求△ADE的面积.3.如图,在中,,的高与的比是多少?(友情提示:利用三角形的面积公式)4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。