欢迎来到天天文库
浏览记录
ID:42808809
大小:118.00 KB
页数:3页
时间:2019-09-22
《22.1.2 二次函数 y=ax2图像和性质》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、.22.1.2 二次函数y=ax2的图象和性质一、教学目标:通过画图,了解二次函数y=ax2(a≠0)的图象是一条抛物线,理解其顶点为何是原点,对称轴为何是y轴,开口方向为何向上(或向下),掌握其顶点、对称轴、开口方向、最值和增减性与解析式的内在关系,能运用相关性质解决有关问题.二、重点与难点重点1.理解二次函数y=ax2的性质;2.掌握二次函数解析式y=ax2与函数图象的内在关系.难点画二次函数y=ax2的图象.三、教学过程设计(一)引入新课1.下列哪些函数是二次函数?哪些是一次函数?(1)y=3x-1 (2)y=2x2+7 (3)y=x-2(4)y=
2、3(x-1)2+12.一次函数的图象,正比例函数的图象各是怎样的呢?它们各有什么特点,又有哪些性质呢?3.上节课我们学习了二次函数的概念,掌握了它的一般形式,这节课我们先来探究二次函数中最简单的y=ax2的图象和性质.(二)教学活动活动1:画函数y=-x2的图象.(1)多媒体展示画法(列表,描点,连线).(2)提出问题:它的形状类似于什么?(3)引出一般概念:抛物线,抛物线的对称轴、顶点.活动2:画函数y=-0.5x2,y=-2x2的图象.(1)教师巡视,展示学生的作品并进行点拨;教师再用多媒体课件展示正确的画图过程.(2)引导学生观察二次函数y=-0.
3、5x2,y=-2x2与函数y=-x2的图象,提出问题:它们有什么共同点和不同点?(3)归纳总结:共同点:①它们都是抛物线;②除顶点外都处于x轴的下方;③开口向下;④对称轴是y轴;⑤顶点都是原点(0,0).不同点:开口大小不同.(4)强调指出:这三个特殊的二次函数y=ax2是当a<0时的情况.系数a越大,抛物线开口越大.二次函数y=ax2(a≠0)的图象和性质图象(草图)开口方向顶点对称轴最高或最低点最值a>0当x=____时,y有最____值,是________.a<0当x=____时,y有最____值,是________. 活动3:达标检测(1)函数
4、y=-8x2的图象开口向________,顶点是________,对称轴是________,当x________时,y随x的增大而减小.(2)二次函数y=(2k-5)x2的图象如图所示,则k的取值范围为________.(3)如图,①y=ax2;②y=bx2;③y=cx2;④y=dx2.比较a,b,c,d的大小,用“>”连接________.答案:(1)下,(0,0),x=0,>0;(2)k>2.5;(3)a>b>d>c.三、课堂小结与作业布置课堂小结1.二次函数的图象都是抛物线.2.二次函数y=ax2的图象性质:(1)抛物线y=ax2的对称轴是y轴,顶
5、点是原点.(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点;
6、a
7、越大,抛物线的开口越小.作业布置教材第32页 练习.
此文档下载收益归作者所有