欢迎来到天天文库
浏览记录
ID:42730457
大小:94.25 KB
页数:4页
时间:2019-09-21
《2018_2019学年七年级数学上册第一章丰富的图形世界1.1生活中的立体图形作业设计(新版)北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.1生活中的立体图形1.下面几何体中,全是由曲面围成的是()A.圆柱B.圆锥C.球D.正方体2.下列说法错误的是()A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面、侧面为长方形D.球体的三种视图均为同样大小的图形3.如图,在一个棱长为6cm的正方体上摆放另一个正方体,使得上面正方体的四个顶点恰好均落在下面正方体的四条棱上,则上面正方体体积的可能值有( )A.1个B.2个C.3个D.无数个4.如图,左排的平面图形绕轴旋转一周,可以得到右排的立体图形,那么与甲、乙、丙、丁各平
2、面图形顺序对应的立体图形的编号应为( )A.③④①②B.①②③④C.③②④①D.④③②①5.在下列几何体中,由三个面围成的有____,由四个面围成的有____.(填序号)6.如图,在直六棱柱中,棱AB与棱CD的位置关系为____,大小关系是_____.7.用五个面围成的几何体可能是_______.8.若一个直四棱柱的底面是边长为1cm的正方形,侧棱长为2cm,则这个直棱柱的所有棱长的和是___cm.9.由一个平面图形绕着它的一条边所在的直线旋转一周形成的几何体,叫做旋转体.如果有一个几何体,围成它的
3、各个面都是多边形,那么这个几何体叫做________.在你所熟悉的立体图形中,旋转体有________,多面体有________.(要求各举两个例子)10.一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有__种爬行路线.11.探究:将一个正方体表面全部涂上颜色,试回答:(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i个面涂色的小正方体的个数记为xi,那么x3=____,x2=____,x1=____,x0=____;
4、(2)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,与(1)同样的记法,则x3=____,x2=____,xl=____,x0=____;(3)如果把正方体的棱n等分(n≥3),然后沿等分线把正方体切开,得到n3个小正方体,与(1)同样的记法,则x3=____,x2=____,x1=____,x0=____.答案1.【答案】C【解析】圆柱的上下底面是平的面,圆锥的底面平的面,正方体的六个面都是平的面.故选C.2.【答案】B【解析】三棱柱的侧面都是平行四边形.故选B.3.【答案】
5、D【解析】上面正方体体积取决于上面立方体的棱长,由于棱长有无数种情况,则上面正方体体积的值也有无数种.故选D.4.【答案】A【解析】甲旋转后得到③,乙旋转后得到④,丙旋转后得到①,丁旋转后得到②.故与甲乙丙丁各平面图形顺序对应的立体图形的编号应为③④①②.故选A.5.【答案】(2)(6)【解析】正方体和长方体都是由六个面围成;圆柱由三个面围成;球是由一个面围成;圆锥由两个面围成;三棱锥由4个面围成.故由三个面围成的有(2),由四个面围成的有(6).6.【答案】平行相等【解析】由图形易知,棱AB与棱CD
6、的位置关系为平行,大小关系是相等.【方法点睛】本题目是一道考查直棱柱的相关问题,比如棱的位置关系,数量关系.在棱柱中,侧棱都是平行且相等的.上下两底面相对的棱平行且相等.难度不大.7.【答案】四棱锥或三棱柱【解析】四棱锥是由4个侧面和1个底面围成,三棱柱是由3个侧面和2个底面围成.故用五个面围成的几何体可能是四棱锥或三棱柱.8.【答案】16【解析】上下底面的棱长之和为,侧棱长之和为,则这个直棱柱的所有棱长的和是16cm.9.【答案】多面体圆柱、圆锥六棱柱、三棱锥【解析】由一个平面图形绕着它的一条边所在
7、的直线旋转一周形成的几何体,叫做旋转体.如果有一个几何体,围成它的各个面都是多边形,那么这个几何体叫做多面体;.在你所熟悉的立体图形中,旋转体有圆柱、圆锥;多面体有六棱柱、三棱锥(所有的棱柱,棱锥).10.【答案】6【解析】第一步:由A出发的棱有3条。第二步:这3条棱各自有2个分支棱。则3×2=6(条)第三步:分支棱到点B各只有一条分支棱:所以6×1=6(条)。11.【答案】(1)x3=8(2)x2=12(3)x1=6(4)x0=1(5)x3=8(6)x2=24(7)x1=24(8)x0=8(9)8个
8、(10)12(n﹣2)个(11)6(n﹣2)2个(12)(n﹣2)3个.【解析】(1)根据长方体的分割规律可得x3=8,x2=12,x1=6,x0=1.(2)把正方体的棱四等分时,顶点处的小正方体三面涂色共8个;有一条边在棱上的正方体有24个,两面涂色;每个面的正中间的4个只有一面涂色,共有24个;正方体正中心处的8个小正方体各面都没有涂色.故x3=8,x2=24,x1=24,x0=8.(3)由以上可发现规律:三面涂色8个,两面涂色12(n﹣2)个,一面
此文档下载收益归作者所有