Mathematical Statistics - Jun Shaochap6

Mathematical Statistics - Jun Shaochap6

ID:42656857

大小:709.83 KB

页数:78页

时间:2019-09-19

Mathematical Statistics - Jun Shaochap6_第1页
Mathematical Statistics - Jun Shaochap6_第2页
Mathematical Statistics - Jun Shaochap6_第3页
Mathematical Statistics - Jun Shaochap6_第4页
Mathematical Statistics - Jun Shaochap6_第5页
资源描述:

《Mathematical Statistics - Jun Shaochap6》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Chapter6HypothesisTestsAgeneraltheoryoftestinghypothesesispresentedinthischapter.LetXbeasamplefromapopulationPinP,afamilyofpopulations.BasedontheobservedX,wetestagivenhypothesisH0:P∈P0versusH1:P∈P1,whereP0andP1aretwodisjointsubsetsofPandP0∪P1=P.Notationalconventionsandbasicc

2、oncepts(suchastwotypesoferrors,significancelevels,andsizes)giveninExample2.20and§2.4.2areusedinthischapter.6.1UMPTestsAtestforahypothesisisastatisticT(X)takingvaluesin[0,1].WhenX=xisobserved,werejectH0withprobabilityT(x)andacceptH0withprobability1−T(x).IfT(X)=1or0a.s.P,thenT(

3、X)isanonrandomizedtest.OtherwiseT(X)isarandomizedtest.ForagiventestT(X),thepowerfunctionofT(X)isdefinedtobeβT(P)=E[T(X)],P∈P,(6.1)whichisthetypeIerrorprobabilityofT(X)whenP∈P0andoneminusthetypeIIerrorprobabilityofT(X)whenP∈P1.Aswediscussedin§2.4.2,withasampleofafixedsize,weare

4、notabletominimizetwoerrorprobabilitiessimultaneously.OurapproachinvolvesmaximizingthepowerβT(P)overallP∈P1(i.e.,minimizingthetypeIIerrorprobability)andoveralltestsTsatisfyingsupβT(P)≤α,(6.2)P∈P0whereα∈[0,1]isagivenlevelofsignificance.Recallthattheleft-handsideof(6.2)isdefinedt

5、obethesizeofT.3933946.HypothesisTestsDefinition6.1.AtestT∗ofsizeαisauniformlymostpowerful(UMP)testifandonlyifβT∗(P)≥βT(P)forallP∈P1andToflevelα.IfU(X)isasufficientstatisticforP∈P,thenforanytestT(X),E(T

6、U)hasthesamepowerfunctionasTand,therefore,tofindaUMPtestwemayconsiderteststha

7、tarefunctionsofUonly.TheexistenceandcharacteristicsofUMPtestsarestudiedinthissec-tion.6.1.1TheNeyman-PearsonlemmaAhypothesisH0(orH1)issaidtobesimpleifandonlyifP0(orP1)containsexactlyonepopulation.Thefollowingusefulresult,whichhasalreadybeenusedonceintheproofofTheorem4.16,pro

8、videstheformofUMPtestswhenbothH0andH1aresimple.Theorem6.1(Neyman-Pearsonlemma).SupposethatP0={P0}andP1={P1}.Letfjbethep.d.f.ofPjw.r.t.aσ-finitemeasureν(e.g.,ν=P0+P1),j=0,1.(i)(ExistenceofaUMPtest).Foreveryα,thereexistsaUMPtestofsizeα,whichisequalto1f1(X)>cf0(X)T∗(X)=γf1(X)=

9、cf0(X)(6.3)0f1(X)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。