全国初中数学联赛金牌教练讲座第二十二讲 直角三角形

全国初中数学联赛金牌教练讲座第二十二讲 直角三角形

ID:42649860

大小:950.00 KB

页数:9页

时间:2019-09-19

全国初中数学联赛金牌教练讲座第二十二讲 直角三角形_第1页
全国初中数学联赛金牌教练讲座第二十二讲 直角三角形_第2页
全国初中数学联赛金牌教练讲座第二十二讲 直角三角形_第3页
全国初中数学联赛金牌教练讲座第二十二讲 直角三角形_第4页
全国初中数学联赛金牌教练讲座第二十二讲 直角三角形_第5页
资源描述:

《全国初中数学联赛金牌教练讲座第二十二讲 直角三角形》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、兰州第十中学数学组2013年最新八年级数学竞赛讲座第二十二讲直角三角形的再发现直角三角形是一类特殊三角形,有着丰富的性质:两锐角互余、斜边的平方是两直角边的平方和、斜边中线等于斜边一半、30°所对的直角边等于斜边一半等,在学习了相似三角形的知识后,我们利用相似三角形法,能得到应用极为广泛的结论.如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,则有:1.同一三角形中三边的平方关系:AB2=AC2+BC2,AC2=AD2+CD2,BC2=CD2+BD2.2.角的相等关系:∠A=∠DCD,∠B=∠ACD.3.线段的等积式:由面积得AC×BC=AB×CD;由△ACD∽△CBD∽△ABC,得C

2、D2=AD×BD,AC2=AD×AB,BC2=BD×AB.以直角三角形为背景的几何问题,常以下列图形为载体,综合了全等三角形、相似三角形、等腰三角形,特殊四边形等丰富的知识.注直角三角形被斜边上的高分成的3个直角三角形相似,由此导出的等积式的特点是:一线段是两个三角形的公共边,另两条线段在同一直线上,这些等积式广泛应用于与直角三角形问题的计算与证明中.例题求解【例1】等腰三角形ABC的底边长为8cm,腰长5cm,一动点P在底边上从B向C以0.25cm/秒的速度移动,当点P运动到PA与腰垂直的位置时,点P运动的时间为.(江苏省常州市中考题)思路点拨为求BP需作出底边上的高,就得到与直角三角形

3、相关的基本图形,注意动态过程.第9页(共9页)【例2】如图,在矩形ABCD中,AE⊥BD于E,S矩形ABCD=40cm2,S△ABE:S△DBA=1:5,则AE的长为()A.4cmB.5cmC.6cmD.7cm(青岛市中考题)思路点拨从题设条件及基本图形入手,先建立AB、AD的等式.【例3】如图,在Rt△ABC中,∠BAC=90°,AB=AC,DB为BC的中点,E为AC上一点,点G在BE上,连结DG并延长交AE于F,若∠FGE=45°.(1)求证:BD×BC=BG×BE;(2)求证:AG⊥BE;(3)若E为AC的中点,求EF:FD的值.(盐城市中考题)思路点拨发现图形中特殊三角形、基本图形

4、、线段之间的关系是解本例的基础.(1)证明△GBD∽△CBE;(2)证明△ABG∽EBA;(3)利用相似三角形,把求的值转化为求其他线段的比值.【例4】如图,H、Q分别是正方形ABCD的边AB、BC上的点,且BH=BQ,过B作HC的垂线,垂足为P.求证:DP⊥PQ.(“祖冲之杯”邀请赛试题)第9页(共9页)思路点拨因∠BPQ+∠QPC=90°,要证DP⊥PQ,即证∠QPC+∠DPC=90°,只需证∠BPQ=∠DPC,只要证明△BPQ∽△CPD即可.注题设条件有中点,图形中有与直角三角形相关的基本图形,给我们以丰富的联想,单独应用或组合应用可推出许多结论.因此,读者应不拘泥于给出的思路点拨,

5、多角度探索与思考,寻找更多更好的解法,以培养我们发散思的能力.【例5】已知△ABC中,BC>AC,CH是AB边上的高,且满足,试探讨∠A与∠B的关系,井加以证明.(武汉市选拔赛试题)思路点拨由题设条件易想到直角三角形中的基本图形、基本结论,可猜想出∠A与∠B的关系,解题的关键是综合运用勾股定理、比例线段的性质,推导判定两个三角形相似的条件.注构造逆命题是提出问题的一个常用方法,本例是在直角三角形被斜边上的高分成的相似三角形得出结论基础上提出的一个逆命题,读者你能提出新的问题吗?并加以证明.学力训练1.如图,已知正方形ABCD的边长是1,P是CD边的中点,点Q在线段BC上,当BQ=时,三角形

6、ADP与三角形QCP相似.(云南省中考题)2.如图,Rt△ABC中,CD为斜边AB上的高,DF⊥CB于E,若BE=6,CE=4,则AD=.3.如图,平行四边形ABCD中,AB=2,BC=2,AC=4,过AC的中点O作EF⊥AC交AD于E,交BC于F,则EF=.(重庆市竞赛题)4.P是Rt△ABC的斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A.1条B.2条C.3条D.4条第9页(共9页)(2001年安徽省中考题)5.在△ABC中,AD是高,且AD2=BD×CD,那么∠BAC的度数是()A.小于90°B.等于90°C.大于90°

7、D.不确定6.如图,矩形ABCD中,AB=,BC=3,AE⊥BD于E,则EC=()A.B.C.D.7.如图,在矩形ABCD中,E是CD的中点,BE⊥AC交AC于F,过F作FG∥AB交AE于G,求证:AG2=AF×FC.8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G.求证;(1)AB=BH;(2)AB2=GA×HE.(青岛市中考题)9.如图

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。