中考数学动点问题专题练习

中考数学动点问题专题练习

ID:42582857

大小:942.00 KB

页数:15页

时间:2019-09-18

中考数学动点问题专题练习_第1页
中考数学动点问题专题练习_第2页
中考数学动点问题专题练习_第3页
中考数学动点问题专题练习_第4页
中考数学动点问题专题练习_第5页
资源描述:

《中考数学动点问题专题练习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、中考动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G.(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH,GP,求关于的函数解析式,并写出函数的定义域(即自变量的取值范围).HMNGPOAB图1(3)如果△PGH是等腰三角形,试求出线段PH的长.二、应用比例式建立函数解析式例2(2006年·山东)如

2、图2,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=CE=.(1)如果∠BAC=30°,∠DAE=105°,试确定与之间的函数解析式;AEDCB图2(2)如果∠BAC的度数为,∠DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解析式还成立?试说明理由.15例3(2005年·上海)如图3(1),在△ABC中,∠ABC=90°,AB=4,BC=3.点O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E.作EP⊥ED,交射线AB于点P,交射线CB于点F.

3、O●FPDEACB3(1)(1)求证:△ADE∽△AEP.(2)设OA=,AP=,求关于的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP的长.三、应用求图形面积的方法建立函数关系式ABCO图8H例4(2004年·上海)如图,在△ABC中,∠BAC=90°,AB=AC=,⊙A的半径为1.若点O在BC边上运动(与点B、C不重合),设BO=,△AOC的面积为.(1)求关于的函数解析式,并写出函数的定义域.(2)以点O为圆心,BO长为半径作圆O,求当⊙O与⊙A相切时,△AOC的面积.15一、以动态几

4、何为主线的压轴题(一)点动问题.1.(09年徐汇区)如图,中,,,点在边上,且,以点为顶点作,分别交边于点,交射线于点.(1)当时,求的长;(2)当以点为圆心长为半径的⊙和以点为圆心长为半径的⊙相切时,求的长;(3)当以边为直径的⊙与线段相切时,求的长.15(二)线动问题2,在矩形ABCD中,AB=3,点O在对角线AC上,直线l过点O,且与AC垂直交AD于点E.(1)若直线l过点B,把△ABE沿直线l翻折,点A与矩形ABCD的对称中心A'重合,求BC的长;ABCDEOlA′(2)若直线l与AB相交于点F,

5、且AO=AC,设AD的长为,五边形BCDEF的面积为S.①求S关于的函数关系式,并指出的取值范围;②探索:是否存在这样的,以A为圆心,以长为半径的圆与直线l相切,若存在,请求出的值;若不存在,请说明理由.15(三)面动问题3.如图,在中,,、分别是边、上的两个动点(不与、重合),且保持,以为边,在点的异侧作正方形.(1)试求的面积;(2)当边与重合时,求正方形的边长;(3)设,与正方形重叠部分的面积为,试求关于的函数关系式,并写出定义域;(4)当是等腰三角形时,请直接写出的长.15解决动态几何问题的常见方

6、法有:一、特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A不重合),直线PA交⊙O2于点C,PB切⊙O2于点B,则的值为(A)(B)(C)(D)二、动手实践,操作确认例4(2003年广州市中考试题)在⊙O中,C为弧AB的中点,D为弧AC上任一点(与A、C不重合),则(A)AC+CB=AD+DB(B)AC+CBAD+DB(D)AC+CB与AD+DB的大小关系不确定例5:如图

7、,过两同心圆的小圆上任一点C分别作小圆的直径CA和非直径的弦CD,延长CA和CD与大圆分别交于点B、E,则下列结论中正确的是(*)(A)(B)(C)(D)的大小不确定三、建立联系,计算说明例6:如图,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为.15例题如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B。⑴求抛物线的解析式;(用顶点式求得抛物线的解析式为)⑵若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为

8、顶点的四边形为平行四边形,求D点的坐标;⑶连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由。例1题图图1图215练习1、已知抛物线经过及原点.(1)求抛物线的解析式.(由一般式得抛物线的解析式为)(2)过点作平行于轴的直线交轴于点,在抛物线对称轴右侧且位于直线下方的抛物线上,任取一点,过点作直线平行于轴交轴于点,交直线于点,直线与直线及两坐标轴围成

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。