人教A版高数学导学案教案 2.1平面向量的实际背景及基本概念

人教A版高数学导学案教案 2.1平面向量的实际背景及基本概念

ID:42392542

大小:50.00 KB

页数:4页

时间:2019-09-14

人教A版高数学导学案教案 2.1平面向量的实际背景及基本概念_第1页
人教A版高数学导学案教案 2.1平面向量的实际背景及基本概念_第2页
人教A版高数学导学案教案 2.1平面向量的实际背景及基本概念_第3页
人教A版高数学导学案教案 2.1平面向量的实际背景及基本概念_第4页
资源描述:

《人教A版高数学导学案教案 2.1平面向量的实际背景及基本概念》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.1.1向量的物理背景与概念2.1.2向量的几何表示2.1.3相等向量与共线向量教学目标:1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:

2、平行向量、相等向量和共线向量的区别和联系.教学过程:引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?新课学习:(一)向量的概念:我们把既有大小又有方向的量叫向量。(二)请同学阅读课本后回答:1、数量与向量有何区别?2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向

3、量的起点全部移到一点O,这时它们是不是平行向量?这时各向量的终点之间有什么关系?4(三)探究学习A(起点)B(终点)a1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母:;④向量的大小―长度称为向量的模,记作

4、

5、.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和

6、方向两个要素,与起点无关,只要大小和方向相同,这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作.的方向是任意的.注意与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平

7、行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段表示,并且与有向线段的起点无关.7、共线向量与平行向量关系:平行向量就是共线向量,因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.4(四)理解和巩固:例1书本75页

8、例1.例2判断及解答:(1)平行向量是否一定方向相同?(2)与任意向量都平行的向量是什么向量?(3)若两个向量在同一直线上,则这两个向量一定是什么向量?例3.如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.变式一:与向量长度相等的向量有多少个?变式二:是否存在与向量长度相等、方向相反的向量?变式三:与向量共线的向量有哪些?例4判断及解答:(1)不相等的向量是否一定不平行?(2)与零向量相等的向量必定是什么向量?(3)当且仅当满足什么条件时两个非零向量相等?(4)共线向量

9、一定在同一直线上吗?例5下列命题正确的是()A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行4课堂练习:1.判断下列命题是否正确,若不正确,请简述理由.①向量与是共线向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD是平行四边形当且仅当=⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不

10、同,则终点一定不同.2、课本77页练习1、2、3、4题三、小结:1、描述向量的两个指标:模和方向.2、平面向量的概念和向量的几何表示;3、向量的模、零向量、单位向量、平行向量等概念。四、课后作业:习题2.1A组3,4题4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。