人教A版高数学导学案教案 3.4-2

人教A版高数学导学案教案 3.4-2

ID:42378343

大小:64.00 KB

页数:3页

时间:2019-09-14

人教A版高数学导学案教案 3.4-2_第1页
人教A版高数学导学案教案 3.4-2_第2页
人教A版高数学导学案教案 3.4-2_第3页
资源描述:

《人教A版高数学导学案教案 3.4-2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、基本不等式第二课时(1)教学目标(a)知识与技能:能够运用基本不等式解决生活中的应用问题(b)过程与方法:本节课是基本不等式应用举例的延伸。整堂课要围绕如何引导学生分析题意、设未知量、找出数量关系进行求解这个中心。3道例题的安排从易到难、从简单到复杂,适应学生的认知水平。教师要根据课堂情况及时提出针对性问题,同时通过学生的解题过程进一步发现学生的思维漏洞,纠正数学表达中的错误(c)情感与价值:进一步培养学生学习数学、应用数学的意识以及思维的创新性和深刻性(2)教学重点、教学难点教学重点:正确运用基本不等式教学难点:注意运用不等式求最

2、大(小)值的条件(3)学法与教学用具列出函数关系式是解应用题的关键,也是本节要体现的技能之一。对例题的处理可让学生思考,然后师生共同对解题思路进行概括总结,使学生更深刻地领会和掌握解应用题的方法和步骤。直尺和投影仪(4)教学设想1、设置情境提问:前一节课我们已经学习了基本不等式,我们常把叫做正数的算术平均数,把叫做正数的几何平均数。今天我们就生活中的实际例子研究它的重用作用。2、新课讲授例1、(1)用篱笆围一个面积为100的矩形菜园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?(2)一段长为36的篱笆围成一个矩形

3、菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。最大面积是多少?分析:(1)当长和宽的乘积确定时,问周长最短就是求长和宽和的最小值(2)当长和宽的和确定时,求长与宽取何值时两者乘积最大解:(1)设矩形菜园的长为m,宽为m,则篱笆的长为2()m由,可得2()等号当且仅当,因此,这个矩形的长、宽为10m时,所用篱笆最短,最短篱笆为40m(2)设矩形菜园的长为m,宽为m,则2()=36,=18,矩形菜园的面积为3,由可得,可得等号当且仅当因此,这个矩形的长、宽都为9m时,菜园的面积最大,最大面积为81例2、某工厂要建造一个长方形无盖贮

4、水池,其容积为4800深为3m。如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低造价为多少元?分析:若底面的长和宽确定了,水池的造价也就确定了,因此可转化为考察底面的长和宽各为多少时,水池的总造价最低。解:设底面的长为m,宽为m,水池总造价为元,根据题意,有由容积为4800可得因此由基本不等式与不等式性质,可得即可得等号当且仅当所以,将水池的地面设计成边长为40m的正方形时总造价最低,最低造价为297600元1、课堂练习课本练习第2、3、4题34、归纳总结利用基本不等式来解题时,要学会

5、审题及根据题意列出函数表达式,要懂得利用基本不等式来求最大(小)值(5)评价设计1、课本习题3.4第2、3、4题3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。