从被动接受学习走向变式创新学习

从被动接受学习走向变式创新学习

ID:42127261

大小:128.00 KB

页数:8页

时间:2019-09-08

从被动接受学习走向变式创新学习_第1页
从被动接受学习走向变式创新学习_第2页
从被动接受学习走向变式创新学习_第3页
从被动接受学习走向变式创新学习_第4页
从被动接受学习走向变式创新学习_第5页
资源描述:

《从被动接受学习走向变式创新学习》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、从被动接受学习走向变式创新学习——中学数学变式创新学习模式的探索有凌总(广州市第86中学./•东省/•州市510700J(本文发表在《中学数学»2003年第10期:5-8)改变“被动接受一一机械演练”的数学学习方式,构建有利于学生主动学习、自主探究、合作交流,有利于激发学牛的学习兴趣,有利于培养学牛的创新意识的数学学习模式,己成为高屮数学学法研究的一个热点。木文结合笔者主持的广州市教冇科学“十五”规划课题《小学数学变式创新模式研究》的学法指导实践,构建“高中数学变式创新学习模式”。1.变式是模仿与创新的中介,是创新的重要途径

2、。变式是指相对于某种范式(即数学教材中具体的数学思维成果,含基础知识、知识结构、典型问题、思维模式等)的变化形式,就是不断变更问题的情境或改变思维的角度,在保持事物的本质特征不变的悄况下,使事物的非本质属性不断迁移的变化方式[2]。通过变式方式进行技能与思维的训练叫做变式训练,“变式训练是小国数学教育的主要特征采用变式方式进行教学叫做变式教学。变式教学要求在课堂上通过变式展示知识的发生、发展、形成的过程,因此,变式教学有利于培养学生探究问题的能力,是双基教学、思维训练和能力培养的重要途径。通过变式方式进行学习叫做变式学习。变

3、式学习要求学生主动“变更题目”,注重“变式设问”、善于“变位思考”,敢于质疑、批判,勇于探索创新。变式学习是培养创新意识和创新能力的重要方式。2.变式创新学习的基本过程在上述理念引领下,我们在学法指导实践中,总结出如下“变式创新学习模式”.基木观点:学生具冇创新的潜能和欲望,能在变式学习中自主创新。基本方法:变式探究,求界思维。操作序列:图1•变式创新学习的基本过程变式创新学习模式,即“以问题为起点,以变式探究为重点,以培养创新意识为H标”的学习模式。它按照“问题一范式一变式一创新一评价”的学习程序,积累数学活动经验,形成数

4、学知识网络,培养创新意识和创新能力。该模式以变式探究为重点,注重将变式学习与创新学习相结合,体现了数学学习的基木要求。2.1提出问题问题是一种具有一定困难的学习情境(学习任务)。“问题是数学的心脏”,数学学习要善于提出问题。科学巨匠爱因斯坦说过:“提出一个问题,比解决一个问题更重要。”这是巨人的切身体验和对科学的领悟和概括。一个学生若善于提出问题,表现出非凡的“提问”才华,其发展前景将是乐观的。问题既是学习的起点,乂是学习的终点(新问题)。捉岀的问题要有价值,可引导学牛就数学基本知识、基木方法、典型问题提出占己的问题。如定理

5、的逆命题是否成立?概念、定理、公式在解题中的作用是什么?从课本上的结论能推出哪些新结论?这一节、章内容有哪些主要的思想方法?这些思想方法在解决问题时是怎样运用的?这个题目能推广吗?等等。范式指数学课木中具体的思维成呆,含基础知识、知识结构、典型问题、思维模式等。数学学习要善于归纳、整理范式,形成知识网络。2・3变式练习在这里指演练课木习题及老师布置的作业题。这些题冃大多是课本例题的变式,用于巩固基础知识,形成基本技能,发展认知结构。“动手做”是数学学习的一种重耍方法。2.4变式探究要探究数学问题的“形式变式”、“方法变式”、

6、“内容变式”,多思善变,举一反三,既正向思维,乂逆向探求,既发散思考,又收敛思维;多向思考和研究问题,深化对知识的理解。2.5形成观点耍通过概括、比较,在口主探究的基础上,形成新解法、新命题、新观点,积累数学学习活动经验。2.6自我评价新的观点形成后,通过在班级或小组上的交流,反思、评价H己的思维成果,及时纠正错谋、弥补错漏,求新求异、审美创造,强化创新意识,发展创新人格。上述六个环节循环往复,不断发现,不断批判,不断质疑,不断反思,自主创新。3.变式创新学习的基本内容3.1形式变式指保留本质属性不变,仅改变表达形式。常见的

7、有语言变式和图形变式。(1)语言变式。指文字语言、图形语言、符号语言之间的相互转换。数学解题时要十分注重语言变式,将文字语言、符号语言和图形语言及时进行转换。(2)图形变式。将揭示某一概念的图形由标准位置改变为非标准位置,由基本图形改变为非基本图形。图形变式对突出概念的本质十分必要。以基本图形为“纶长点”,通过将其引屮变换为组合图形而得到变式题组,从而培养想象能力、变换能力及创新意识。3.2内容变式指数学内容的多种变化形式。常见的冇概念变式、定理变式、公式变式和问题变式。(1)概念变式。它包括反映该概念本质属性的各种变化形式

8、。如符号表示、等价说法、图形变式及反面实例等。概念学习要注重变式,在变式屮掌握概念的木质。(2)定理变式。数学定理揭示了儿个概念Z间的某种本质联系,是经过严格论证的数学命题。掌握定理就意味着明确定理的结构特征(条件和结论),弄清定理的来龙去脉、推证方法和适用范I韦I。改变条件或改变结论,会

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。