高中数学必修2期末测试试卷

高中数学必修2期末测试试卷

ID:41998718

大小:143.50 KB

页数:4页

时间:2019-09-06

高中数学必修2期末测试试卷_第1页
高中数学必修2期末测试试卷_第2页
高中数学必修2期末测试试卷_第3页
高中数学必修2期末测试试卷_第4页
资源描述:

《高中数学必修2期末测试试卷》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高中数学必修2模块测试试卷一、选择题1.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A.3B.-2C.2D.不存在2.过点且平行于直线的直线方程为()A. B.  C.  D.3.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D.过一条直线有且只有一个平面与已知平面垂直.4.已知点、,则线段的垂直平分线的方程是()A.B.C.D.5.在同一直角坐标系中,表示直线与正确的是(  )A.        B.       C.

2、       D.6.已知a、b是两条异面直线,c∥a,那么c与b的位置关系()A.一定是异面B.一定是相交C.不可能平行D.不可能相交7.设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是()(A)①和②(B)②和③(C)③和④(D)①和④8.圆与直线的位置关系是(  )A.相交    B.相切    C.相离     D.直线过圆心9.两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y-4-+c=0上,则m+c的值为()A.-1B.2C.3D.010.在空间四边形ABCD各边AB、BC、C

3、D、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外11.若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是()A.MN∥βB.MN与β相交或MNβC.MN∥β或MNβD.MN∥β或MN与β相交或MNβ12.已知A、B、C、D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC()A.垂直B.平行C.相交D.位置关系不确定二填空题13.已知A(1,-2,1),B(2,2,2),点P在z轴上,且

4、PA

5、=

6、PB

7、,则点P的坐标为;14.

8、已知正方形ABCD的边长为1,AP⊥平面ABCD,且AP=2,则PC=;15.过点(1,2)且在两坐标轴上的截距相等的直线的方程_____;16.圆心在直线上的圆C与轴交于两点,,则圆C的方程为.三解答题17(12分)已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x-3y+16=0,CA:2x+y-2=0,求AC边上的高所在的直线方程.18(12分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1)FD∥平面ABC;(2)AF⊥平面EDB.M-4-19.(12分)如图,在正方体ABCD-A1B1

9、C1D1中,E、F、G分别是CB、CD、CC1的中点,(1)求证:平面AB1D1∥平面EFG;(2)求证:平面AA1C⊥面EFG.20.(12分)已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为2;③圆心在直线x-3y=0上.求圆C的方程.-4-21.(12分)设有半径为3的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?22.(14分)已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经

10、过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3)当直线l的倾斜角为45º时,求弦AB的长.-4-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。